Your Name Goes Here

Math 24

Homework 7
\#6.3.2c Find the characteristic polynomial and all eigenvalues and eigenvectors for $A=\left[\begin{array}{rrr}2 & 1 & 1 \\ -4 & -3 & 0 \\ -2 & -2 & 1\end{array}\right]$.
\#6.3.4 [(a) Prove that the matrices $\left[\begin{array}{rr}1 & -5387621.4 \\ 0 & 2\end{array}\right]$ and $\left[\begin{array}{rr}5 & 3 \\ -4 & -2\end{array}\right]$ are similar.
$[(b)]$ Prove that the matrices $\left[\begin{array}{rr}1.000000001 & 0 \\ 0 & 2\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ are not similar.
\#4.1.1c,d Use Theorem 4.3 to show the following sets are linearly independent:
(c) $\left\{\left[\begin{array}{rrr}2 & 0 & 1 \\ 0 & -3 & 4\end{array}\right],\left[\begin{array}{rrr}0 & 2 & 6 \\ -1 & 2 & 0\end{array}\right],\left[\begin{array}{rrr}-2 & 3 & 0 \\ 6 & 0 & 1\end{array}\right]\right\} \subset M_{2 \times 3}(\mathbb{R})$.
(d) $\left\{5 x^{2}-6 x+1, x^{2}-2 x+1,10 x^{2}-8 x+1\right\} \subset C([0,1])$.
\#4.1.12 Let V be an inner product space.
(a) Show that $v=0$ if and only if $\langle v, w\rangle=0$ for every $w \in V$.
(b) Show that $v=w$ if and only if $\langle v, u\rangle=\langle w, u\rangle$ for every $u \in V$.
(c) Let $S, T \in \mathcal{L}(V)$. Show that $S=T$ if and only if $\left\langle S\left(v_{1}\right), v_{2}\right\rangle=\left\langle T\left(v_{1}\right), v_{2}\right\rangle$ for every $v_{1}, v_{2} \in V$.
\#4.2.4ab Find the coordinate representation of each of the following vectors with respect to the orthonormal basis given in the corresponding part of Exercise 4.2.2.
(a) $\left[\begin{array}{r}1 \\ 2 \\ -3\end{array}\right]$
(b) $\left[\begin{array}{ll}5 & 7 \\ 7 & 2\end{array}\right]$
\#4.2.6ab Find the matrix representing each of the following linear maps with respect to the orthonormal basis given in the corresponding part of Exercise 4.2.2.
(a) $T\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}y \\ z \\ x\end{array}\right]$
(b) $T(A)=A^{T}$.

