Your Name Goes Here

Math 24

Homework 6
$\# 3.5 .12$ (a) Show that $\mathcal{B}=\left\{1, x, \frac{3}{2} x^{2}-\frac{1}{2}\right\}$ is a basis for $\mathcal{P}_{2}(\mathbb{R})$.
(b) Find the coordinate representation of x^{2} with respect to \mathcal{B}.
(c) Let $D: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathcal{P}_{2}(\mathbb{R})$ be the derivative operator. Find the coordinate representation of D with respect to \mathcal{B}.
(d) Use your answers to the last two parts to compute $\frac{d}{d x}\left(x^{2}\right)$.
\#3.6.4 Consider the basis $\mathcal{B}=\left\{\left[\begin{array}{r}2 \\ -3\end{array}\right],\left[\begin{array}{r}-1 \\ 2\end{array}\right]\right\}$ of \mathbb{R}^{2}.
(a) Find the change of basis matrices $[I]_{\mathcal{B}, \mathcal{E}}$ and $[I]_{\mathcal{E}, \mathcal{B}}$.
(b) Use these change of basis matrices to find the coordinate representation of each of the following vectors with respect to \mathcal{B}.
(i) $\left[\begin{array}{l}1 \\ 0\end{array}\right]$
(ii) $\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(iii) $\left[\begin{array}{l}2 \\ 3\end{array}\right]$
$(i v)\left[\begin{array}{r}4 \\ -5\end{array}\right]$
(v) $\left[\begin{array}{r}-6 \\ 1\end{array}\right]$
\#8a,b(iii) Consider the basis $\mathcal{B}=\left\{\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 5\end{array}\right]\right\}$ of \mathbb{R}^{2}, and $\mathcal{C}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$ of \mathbb{R}^{3}, and the linear maps $S \in \mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{3}\right)$ and $T \in \mathcal{L}\left(\mathbb{R}^{3}, \mathbb{R}^{2}\right)$ given (wrt standard bases) by

$$
[S]_{\mathcal{E}, \mathcal{E}}=\left[\begin{array}{rr}
2 & -1 \\
5 & 3 \\
-3 & 2
\end{array}\right] \quad \text { and } \quad[T]_{\mathcal{E}, \mathcal{E}}=\left[\begin{array}{rrr}
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
$$

(a) Find the change of basis matrices $[I]_{\mathcal{B}, \mathcal{E}}$ and $[I]_{\mathcal{E}, \mathcal{B}}$ for \mathbb{R}^{2}, and $[I]_{\mathcal{C}, \mathcal{E}}$ and $[I]_{\mathcal{E}, \mathcal{C}}$ for \mathbb{R}^{3}.
(8biii) Use these change of basis matrices to find the coordinate representation of (iii) $[S]_{\mathcal{B}, \mathcal{C}}$.
\#3.6.10 Consider the bases $\mathcal{B}=\left\{\left[\begin{array}{r}2 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ 3 \\ -2\end{array}\right]\right\}$ and $\mathcal{C}=\left\{\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]\left[\begin{array}{r}3 \\ 0 \\ -1\end{array}\right]\right\}$ of the subspace U of \mathbb{R}^{3} defined by $x+2 y+3 z=0$, and let $T \in \mathcal{L}(U)$ be given by $T\left[\begin{array}{c}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}9 z \\ 3 y \\ x\end{array}\right]$.
(a) Find the matrix $[T]_{\mathcal{B}}$.
(b) Find the change of basis matrices $[I]_{\mathcal{B}, \mathcal{C}}$ and $[I]_{\mathcal{C}, \mathcal{B}}$.
(c) Use your answers to the previous parts to find $[T]_{\mathcal{C}}$.
\#3.6.14 Consider the bases $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\mathcal{C}=\left\{w_{1}, \ldots, w_{n}\right\}$ of \mathbb{F}^{n} from the example on page 201.
(a) Find the change of basis matrix $[I]_{\mathcal{C}, \mathcal{B}}$.
\#3.6.16 Prove that the matrices

$$
\left[\begin{array}{rrr}
2 & 0 & -1 \\
-1 & 3 & 2 \\
1 & 3 & 1
\end{array}\right] \text { and }\left[\begin{array}{rrr}
2 & 0 & -1 \\
2 & -3 & -1 \\
1 & 3 & 1
\end{array}\right]
$$

are not similar to each other.
\#3.6.18 Show that the matrix $\left[\begin{array}{rr}5 & 6 \\ -1 & -2\end{array}\right]$ is diagonalizable.
$\# 6.1 .8$ Let $R: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ denote reflection across the plane $x+2 y+3 z=0$. What is $\operatorname{det} R$?
\#6.1.9 Suppose that $\operatorname{dim} V=n$ and $T \in \mathcal{L}(V)$ has n distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Prove that $\operatorname{det} T=\lambda_{1} \cdots \lambda_{n}$.
\#6.2.2c Find the determinant of $\left[\begin{array}{rrrr}1 & -2 & 3 & 0 \\ -2 & 1 & 0 & -1 \\ 3 & -4 & 5 & -2 \\ 0 & -1 & 2 & -3\end{array}\right]$.

