Math 24

Homework 5
\#3.3.9 Suppose that $T \in \mathcal{L}(V, W)$, and that V is finite-dimensional. Prove that $\operatorname{dim} \operatorname{range}(T) \leq \operatorname{dim} V$.
\#3.3.12 Suppose that $\operatorname{dim} V=n$ and that $T \in \mathcal{L}(V)$. Prove that T has at most n distinct eigenvalues.
\#3.3.13 Suppose that $A \in M_{n}(\mathbb{F})$ has n distinct eigenvalues. Show there is a basis of \mathbb{F}^{n} consisting of eigenvectors for A.
\#3.4.6 Prove that if $T \in \mathcal{L}(V, W)$ and W is finite-dimensional, then T is surjective if and only if $\operatorname{rank}(T)=\operatorname{dim} W$.
\#3.4.8 Prove that if $A \in M_{m \times n}(\mathbb{F})$ has rank r, then there exists $v_{1} \ldots, v_{r} \in \mathbb{F}^{m}$ and $w_{1}, \ldots, w_{r} \in \mathbb{F}^{n}$ such that $A=\sum_{i=1}^{r} v_{i} w_{i}^{T}$. Author's hint: Write the columns of A as linear combinations of the basis $\left\{v_{1}, \ldots, v_{r}\right\}$ of $C(A)$. My hint: Do Quick Exercise \#16 for insight.
\#3.4.11 Suppose that $A x=b$ is a 5×5 linear system which is consistent, but does not have a unique solution. Prove that there must be a $c \in \mathbb{F}^{5}$ so that the system $A x=c$ is inconsistent.
\#3.4.12 Suppose that, for a given $A \in M_{3}(\mathbb{R})$ there is a plane P passing through the origin in \mathbb{R}^{3} such that the linear system $A x=b$ is consistent if and only if $b \in P$. Prove that the set of solutions to the homogeneous system $A x=0$ is a line through the origin in \mathbb{R}^{3}.
$\# 3.5 .10$ Let P be the plane

$$
\left\{\left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, 4 x+y-2 z=0\right\}
$$

(a) Find a basis for P.
(b) Determine whether each of the following vectors is in P, and if so give its coordinate representation in terms of your basis.

$$
\text { (i) }\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad(i i)\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right], \quad(i i i)\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

\#3.5.15 Show that the projection $P \in \mathcal{L}\left(\mathbb{R}^{3}\right)$ onto the $x y$-plane is diagonalizable.
\#3.5.16 Let L be a line through the origin in \mathbb{R}^{2}, and let $P \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ be the orthogonal projections onto L. (see Exercise 2.1.2.) Show that P is diagonalizable.

