Math 24

Homework 4
\#3.1.9 Suppose that $T \in \mathcal{L}(V, W)$ is injective and that $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent in V. Show that $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is linearly independent in W.
\#3.1.12 Suppose that $A \in M_{n}(\mathbb{F})$ is upper triangular (see Exercise 2.3.12) and that all the diagonal entries are nonzero (i.e., $a_{i i} \neq 0$ for all $i=1, \ldots, n$.) Use Corollary 3.7 to prove that the columns of A are linearly independent.
$\# 3.1 .14$ Let $n \geq 1$ be an integer, and suppose that there are constants $a_{1}, \ldots, a_{n} \in \mathbb{R}$ such that

$$
\sum_{k=1}^{n} a_{k} \sin (k x)=0
$$

for every $x \in \mathbb{R}$. Show that $a_{1}=\cdots=a_{n}=0$.
Hint: Consider the linear map $D^{2}: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ given by $D^{2}(f)=f^{\prime \prime}$, where $f^{\prime \prime}$ is the second derivative and $C^{\infty}(\mathbb{R})$ is the space of infinitely differentiable functions on \mathbb{R}, and use Theorem 3.8.
\#3.2.10 Find the unique matrix $A \in M_{2}(\mathbb{R})$ such that $A\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{r}0 \\ -1\end{array}\right]$ and $A\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{r}-3 \\ 2\end{array}\right]$.
\#3.2.16 Find a sublist of $\left\{x+1, x^{2}-1, x^{2}+2 x+1, x^{2}-x\right\}$ which is a basis for $\mathcal{P}_{2}(\mathbb{R})$.
\#3.2.22 Suppose that $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ are both bases for V. Show that there is an isomorphism $T \in \mathcal{L}(V)$ so that $T\left(v_{i}\right)=w_{i}$ for all i.

