Math 24

Homework 3
\#2.3.4 Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the map defined by first rotating counterclockwise by an angle θ and then reflecting across the line $y=x$. Find the matrix of T.
\#2.3.11 Suppose that $A \in M_{m \times n}(\mathbb{F})$ is right-invertible, meaning that there is a matrix $B \in$ $M_{n \times m}(\mathbb{F})$ so that $A B=I_{m}$. Show that $m \leq n$. Author's hint: Show that given any vector $\mathbf{b} \in \mathbb{F}^{m}$, the $m \times n$ linear system $A \mathbf{x}=b$ is consistent, and use Theorem 1.2. There are other ways to reach the desired conclusion.
\#2.4.4d,f Determine whether the matrices are singular or invertible; if invertible, find the inverse.

$$
\text { (d) }\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad \text { and } \quad(f)\left[\begin{array}{rrrr}
1 & 0 & 2 & -1 \\
0 & -1 & -2 & 1 \\
2 & 0 & 1 & 0 \\
0 & 2 & -3 & 2
\end{array}\right]
$$

\#2.4.6a Compute $\left[\begin{array}{rrr}1 & 0 & 1 \\ 3 & 2 & 0 \\ 0 & 1 & -2\end{array}\right]^{-1}$, and use it to solve the system

$$
\begin{array}{r}
x+z=1 \\
3 x+2 y=2 \\
y-2 z=3
\end{array}
$$

\#2.5.4d Determine whether the list of vectors $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\} \operatorname{span} \mathbb{R}^{3}$.
\#2.5.6d Determine whether $\lambda=3$ is an eigenvalue for $A=\left[\begin{array}{rrr}7 & -2 & 4 \\ 0 & 1 & 0 \\ -6 & 2 & -3\end{array}\right]$, and if so express $\operatorname{Eig}_{\lambda}(A)$ as the span of some list of vectors.
\#2.5.9 It is a fact (which you do not have to prove) the every solution to the homogeneous differential equation

$$
\frac{d^{2} f}{d t^{2}}+f(t)=0
$$

is a linear combination of $f_{1}(t)=\sin t$ and $f_{2}(t)=\cos t$.
(a) Show that $f_{p}(t)=2 e^{-t}$ is a solution to the differential equation

$$
\frac{d^{2} f}{d t^{2}}+f(t)=4 e^{-t}
$$

(b) Use Proposition 2.42 to show that every solution of the differential equation in part (a) is of the form

$$
f(t)=2 e^{-t}+k_{1} \sin t+k_{2} \cos t
$$

for constants $k_{1}, k_{2} \in \mathbb{R}$.
(c) Determine all solutions $f(t)$ to the differential equation in part (a) which satisfy $f(0)=1$.
(d) Determine all solutions $f(t)$ to the differential equation in part (a) which satisfy $f(0)=a$ and $f(\pi / 2)=b$.
\#2.5.10 Let $T: V \rightarrow W$ be a linear map. Prove that if U is a subspace of V, then $T(U)$ is a subspace of W.
\#2.5.15 Suppose that $\lambda \in \mathbb{F}$ is an eigenvalue for $T \in \mathcal{L}(V)$, and $k \geq 1$ an integer. Show that λ^{k} is an eigenvalue for T^{k}, and $\operatorname{Eig}_{\lambda}(T) \subseteq \operatorname{Eig}_{\lambda^{k}}\left(T^{k}\right)$.
\#2.5.16 Give an example of a linear map $T: V \rightarrow V$ with eigenvalue λ so that $\operatorname{Eig}_{\lambda}(T) \neq$ $\operatorname{Eig}_{\lambda^{2}}\left(T^{2}\right)$.

