Your Name Goes Here

Math 24

Homework 2
$\# 2.1 .5$ Let $C(\mathbb{R})$ be the vector space over \mathbb{R} of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Define $T: C(\mathbb{R}) \rightarrow C(\mathbb{R})$ by $[T f](x)=f(x) \cos x$. Show that T is a linear map.
\#2.1.7 Verify that $\left[\begin{array}{r}1 \\ -1 \\ 1 \\ -1\end{array}\right]$ is an eigenvector of $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3\end{array}\right]$, and determine the corresponding eigenvalue.
\#2.1.9c Find all the eigenvalues and eigenvectors (over \mathbb{C}) of the matrix $\left[\begin{array}{cc}2 & -7 \\ 0 & 2\end{array}\right]$.
\#2.1.11 Find all eigenvalues and eigenvectors of the orthogonal projection $P \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ described in Exercise 2.1.2.
$\# 2.1 .12$ ($n=2,3$ only) Find all the eigenvalues and eigenvectors of the matrix $A \in M_{n}(\mathbb{R})$ with $a_{i j}=1$ for all i, j, and $n=2,3$.
\#2.1.13 Consider a linear system in matrix form: $A \mathbf{x}=\mathbf{b}$ where $A \in M_{m \times n}(\mathbb{F})$ and $\mathbf{b} \in \mathbb{F}^{m}$ are given. Suppose that $\mathbf{x}, \mathbf{y} \in \mathbb{F}^{m}$ are both solutions. Under what condition is $\mathbf{x}+\mathbf{y}$ also a solution?
\#2.1.14 Suppose that $A \in M_{n}(\mathbb{F})$ and that for each $j=1, \ldots, n, \mathbf{e}_{j}$ is an eigenvector of A. Prove that A is a diagonal matrix.
\#2.2.2 Give an explicit isomorphism between \mathbb{R}^{2} and the set of solutions of the linear system (over \mathbb{R})

$$
\begin{array}{r}
w-x+3 z=0 \\
w-x+y+5 z=0 \\
2 w-2 x-y+4 z=0 .
\end{array}
$$

$\# 2.2 .7$ Find the matrix of the linear map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which first reflects across the y-axis, then rotates counterclockwise $\pi / 4$ radians, then stretches by a factor of 2 in the y direction.
\#2.2.8 Show that if 0 is an eigenvalue of $T \in \mathcal{L}(V)$, then T is not injective.

