Math 24

Homework 2

#2.1.5 Let $C(\mathbb{R})$ be the vector space over \mathbb{R} of continuous functions $f : \mathbb{R} \to \mathbb{R}$. Define $T: C(\mathbb{R}) \to C(\mathbb{R})$ by $[Tf](x) = f(x) \cos x$. Show that T is a linear map.

#2.1.7 Verify that $\begin{bmatrix} 1\\ -1\\ 1\\ -1 \end{bmatrix}$ is an eigenvector of $\begin{bmatrix} 1 & 2 & 3 & 4\\ 2 & 3 & 4 & 1\\ 3 & 4 & 1 & 2\\ 4 & 1 & 2 & 3 \end{bmatrix}$, and determine the corresponding eigenvalue.

#2.1.9c Find all the eigenvalues and eigenvectors (over \mathbb{C}) of the matrix $\begin{bmatrix} 2 & -7 \\ 0 & 2 \end{bmatrix}$.

- #2.1.11 Find all eigenvalues and eigenvectors of the orthogonal projection $P \in \mathcal{L}(\mathbb{R}^2)$ described in Exercise 2.1.2.
- #2.1.12 (n = 2, 3 only) Find all the eigenvalues and eigenvectors of the matrix $A \in M_n(\mathbb{R})$ with $a_{ij} = 1$ for all i, j, and n = 2, 3.
- #2.1.13 Consider a linear system in matrix form: $A\mathbf{x} = \mathbf{b}$ where $A \in M_{m \times n}(\mathbb{F})$ and $\mathbf{b} \in \mathbb{F}^m$ are given. Suppose that $\mathbf{x}, \mathbf{y} \in \mathbb{F}^m$ are both solutions. Under what condition is $\mathbf{x} + \mathbf{y}$ also a solution?
- #2.1.14 Suppose that $A \in M_n(\mathbb{F})$ and that for each $j = 1, \ldots, n$, \mathbf{e}_j is an eigenvector of A. Prove that A is a diagonal matrix.
- #2.2.2 Give an explicit isomorphism between \mathbb{R}^2 and the set of solutions of the linear system (over \mathbb{R})

$$w - x + 3z = 0$$
$$w - x + y + 5z = 0$$
$$2w - 2x - y + 4z = 0.$$

- #2.2.7 Find the matrix of the linear map $T : \mathbb{R}^2 \to \mathbb{R}^2$ which first reflects across the *y*-axis, then rotates counterclockwise $\pi/4$ radians, then stretches by a factor of 2 in the *y* direction.
- #2.2.8 Show that if 0 is an eigenvalue of $T \in \mathcal{L}(V)$, then T is not injective.