Worksheet for May 28

MATH 24 - SpRING 2014

Sample Solutions

Consider the matrix

$$
A=\left(\begin{array}{lllll}
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and let A also denote the corresponding left multiplication transformation $\mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$. The characteristic polynomial of A splits $\operatorname{det}(A-t I)=-t^{3}(1-t)^{2}$, but it is not diagonalizable.
(A) Note that

$$
A^{2}=\left(\begin{array}{lllll}
0 & 0 & 0 & 3 & 6 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

1.- Explain why the generalized eigenspace K_{0} equals the null space of A^{2}.

Solution - We know from Theorem 7.4(c) that $\operatorname{dim}\left(\mathrm{K}_{0}\right)$ equals the algebraic multiplicity of the eigenvalue 0 , which is 3 . Since the null space of $A^{2}=(A-0 I)^{2}$ has dimension 3 , it must equal K_{0}.
2.- Explain why the dot diagram corresponding to the eigenvalue 0 must be:

Solution - The number of dots in the first row is the nullity of A, which is 2 . We must have 3 dots in total, so the pattern must be :
3.- Find a vector $x_{2} \in \mathrm{~K}_{0}$ such that $x_{1}=A x_{2} \neq 0$.

Solution - A basis for the null space of A^{2} is $\left\{e_{1}, e_{2}, e_{3}\right\}$. One of these vectors must be outside the null space of A. By inspection, $x_{2}=e_{3}$ works since

$$
x_{1}=A e_{3}=\left(\begin{array}{l}
1 \\
2 \\
0 \\
0 \\
0
\end{array}\right)
$$

4.- Find a vector $x_{3} \in \mathrm{~K}_{0}$ such that $\left\{x_{1}, x_{3}\right\}$ is a basis for the null space of A.

Solution - A basis for the null space of A is $\left\{e_{1}, e_{2}\right\}$. By the Replacement Theorem, one of these two basis vectors must form a basis for the null space of A along with the vector x_{1} above. Since neither e_{1} nor e_{2} is a multiple of x_{1}, they actually both work. So we can pick $x_{3}=e_{1}$.
(B) Note that

$$
(A-I)^{2}=A^{2}-2 A+I=\left(\begin{array}{ccccc}
1 & 0 & -2 & -1 & 0 \\
0 & 1 & -4 & 1 & 3 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

1.- Explain why the generalized eigenspace K_{1} equals the null space of $(A-I)^{2}$.

Solution - We know from Theorem 7.4(c) that $\operatorname{dim}\left(\mathrm{K}_{1}\right)$ equals the algebraic multiplicity of the eigenvalue 1 , which is 2 . Since the null space of $(A-I)^{2}$ has dimension 2 , it must equal K_{0}.
2.- Explain why the dot diagram corresponding to the eigenvalue 1 must be:

Solution - The number of dots in the first row is the nullity of $A-I$, which is 1 . We must have 2 dots in total, so the pattern must be :
3.- Find a vector $y_{2} \in \mathrm{~K}_{1}$ such that $y_{1}=(A-I) y_{2} \neq 0$.

Solution - A basis for the null space of $(A-I)^{2}$ is

$$
\left\{\left(\begin{array}{l}
3 \\
3 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
3 \\
0 \\
0 \\
1
\end{array}\right)\right\}
$$

One of these two vectors must be outside the null space of $A-I$, since it has dimension 1. By inspection, we can pick

$$
y_{2}=\left(\begin{array}{c}
0 \\
-3 \\
0 \\
0 \\
1
\end{array}\right) \quad \text { since } \quad y_{1}=(A-I) y_{2}=\left(\begin{array}{l}
3 \\
3 \\
1 \\
1 \\
0
\end{array}\right) .
$$

4.- Check that y_{1} generates the null space of $A-I$.

Solution - The null space of $A-I$ is one dimensional and it contains the nonzero vector y_{1}, so the null space of $A-I$ must be span $\left\{y_{1}\right\}$.
(C) Verify that $\beta=\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right\}$ is a basis for \mathbb{R}^{5} and compute the matrix representation $\left[L_{A}\right]_{\beta}$.

Solution - We could check that the vectors we found are linearly independent, or rely on Theorem 7.4(b) to see that β is a basis for \mathbb{R}^{5}.

The way we picked the vectors in β leads to the equations:

$$
\begin{array}{ll}
A x_{1}=0, & {\left[A x_{1}\right]_{\beta}=(0,0,0,0,0) ;} \\
A x_{2}=x_{1}, & {\left[A x_{2}\right]_{\beta}=(1,0,0,0,0) ;} \\
A x_{3}=0, & {\left[A x_{3}\right]_{\beta}=(0,0,0,0,0) ;}
\end{array}
$$

and

$$
\begin{array}{lrl}
(A-I) y_{1}=0, & A y_{1}=y_{1},\left[A y_{1}\right]_{\beta} & =(0,0,0,1,0) ; \\
(A-I) y_{2}=y, & A y_{2}=y_{1}+y_{2},\left[A y_{2}\right]_{\beta} & =(0,0,0,1,1)
\end{array}
$$

Therefore,

$$
\left[L_{A}\right]_{\beta}=\left(\begin{array}{ccccc}
\mathbf{0} & \mathbf{1} & 0 & 0 & 0 \\
\mathbf{0} & \mathbf{0} & 0 & 0 & 0 \\
0 & 0 & \mathbf{0} & 0 & 0 \\
0 & 0 & 0 & \mathbf{1} & \mathbf{1} \\
0 & 0 & 0 & \mathbf{0} & \mathbf{1}
\end{array}\right)
$$

which is exactly the Jordan canonical form the dot patterns we found predicted.

