Worksheet for May 14

MATH 24 - SPRING 2014

Sample Solutions

(A) A the harmonics of a vibrating string of length one are describe by the functions

$$
\sin (n \pi x), \quad n=1,2,3, \ldots
$$

on the unit interval $[0,1]$.
An actual vibrating string will typically overlay several harmonic vibrations resulting in more complex patterns that are represented by linear combinations of harmonics:

$$
h(x)=a_{1} \sin (\pi x)+a_{2} \sin (2 \pi x)+a_{3} \sin (3 \pi x)+a_{4} \sin (4 \pi x)+\cdots
$$

The theory of inner product spaces allows us to recover the amplitudes $a_{1}, a_{2}, a_{3}, \ldots$ of the components of the vibration pattern $h(x)$.
1.- Show that the functions $\sin (\pi x), \sin (2 \pi x), \sin (3 \pi x), \ldots$ form an orthogonal family with respect to the inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$ on the space of continuous functions on the unit interval $[0,1]$.

Solution - Using the identity $2 \sin (\alpha) \sin (\beta)=\cos (\alpha-\beta)-\cos (\alpha+\beta)$, we get

$$
\int_{0}^{1} \sin (n \pi x) \sin (m \pi x) d x=\frac{1}{2} \int_{0}^{1} \cos ((n-m) \pi x) d x-\frac{1}{2} \int_{0}^{1} \cos ((m+n) \pi x)
$$

If k is a nonzero integer, then

$$
\int_{0}^{1} \cos (k \pi x) d x=\frac{1}{k \pi} \sin (k \pi 1)-\frac{1}{k \pi} \sin (k \pi 0)=0 .
$$

So if $m \neq n$ then

$$
\int_{0}^{1} \sin (n \pi x) \sin (m \pi x) d x=0
$$

However, then

$$
\int_{0}^{1} \sin ^{2}(n \pi x) d x=\frac{1}{2} \int_{0}^{1} d x=\frac{1}{2} .
$$

So the functions $\sin (n \pi x)$ are orthogonal to each other with respect to the inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$. So they do form an orthogonal family, but since they are not unit vectors they do not form an orthonormal family.
2.- Explain how to use this to recover the amplitudes $a_{1}, a_{2}, a_{3}, \ldots$ of a given vibration pattern $h(x)$.

Solution - Knowing that

$$
h(x)=a_{1} \sin (\pi x)+a_{2} \sin (2 \pi x)+a_{3} \sin (3 \pi x)+a_{4} \sin (4 \pi x)+\cdots
$$

we see that

$$
\begin{aligned}
\langle h(x), \sin (\pi x)\rangle & =a_{1}\langle\sin (\pi x), \sin (\pi x)\rangle+a_{2}\langle\sin (2 \pi x), \sin (\pi x)\rangle+a_{3}\langle\sin (3 \pi x), \sin (\pi x)\rangle+\cdots \\
& =a_{1}\langle\sin (\pi x), \sin (\pi x)\rangle=\frac{a_{1}}{2} .
\end{aligned}
$$

Similarly,

$$
\langle h(x), \sin (2 \pi x)\rangle=\frac{a_{2}}{2}, \quad\langle h(x), \sin (3 \pi x)\rangle=\frac{a_{3}}{2}, \quad \ldots
$$

In general, the formula

$$
a_{n}=2\langle h(x), \sin (n \pi x)\rangle=2 \int_{0}^{1} h(x) \sin (n \pi x) d x
$$

allows us to recover the coefficients $a_{1}, a_{2}, a_{3}, \ldots$
(B) The Legendre Polynomials are a family of polynomials $P_{0}(x), P_{1}(x), P_{2}(x), \ldots$ with the following three properties:
(i) $\operatorname{deg}\left(P_{n}(x)\right)=n$,
(ii) $P_{n}(1)=1$,
(iii) $\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=0$ when $m \neq n$.

These three properties uniquely determine these polynomials! For example the first two properties dictate that $P_{0}(x)$ is the constant polynomial 1 . For $P_{1}(x)$, the first two properties dictate that this is a linear function through the point $(1,1)$. The third property entails that $\int_{-1}^{1} P_{1}(x) d x=0$; the only possibility is $P_{1}(x)=x$.
1.- Show that $\langle f(x), g(x)\rangle=\int_{-1}^{1} f(x) g(x) d x$ is an inner product on $\mathrm{P}(\mathbb{R})$, the vector space of all polynomials with coefficients in \mathbb{R}.

Solution - Since $\langle f(x), g(x)\rangle=\int_{-1}^{1} f(x) g(x) d x$ defines an inner product on the space of continuous functions on the interval $[-1,1]$ and polynomials define continuous functions, we see that $\langle\bullet, \bullet\rangle$ is symmetric bilinear and $\langle f(x), f(x)\rangle \geq 0$ for all $f(x) \in \mathrm{P}(\mathbb{R})$. It is not immediately clear that $\langle f(x), f(x)\rangle=0$ implies that $f(x)$ is the zero polynomials since all we know is that if $\langle f(x), f(x)\rangle=0$ then $f(x)=0$ for all $x \in[-1,1]$. However, since $[-1,1]$ is infinite, this does tell us that $f(x)$ has more than $\operatorname{deg}(f(x))$ roots. Since a nonzero polynomial has no more than $\operatorname{deg}(f(x))$ roots, we conclude that $\langle f(x), f(x)\rangle=0$ does imply that $f(x)$ is the zero polynomial.
2.- Show that $P_{n}(x)$ must be a scalar multiple of

$$
x^{n}-\frac{\left\langle x^{n}, P_{n-1}(x)\right\rangle}{\left\langle P_{n-1}(x), P_{n-1}(x)\right\rangle} P_{n-1}(x)-\cdots-\frac{\left\langle x^{n}, P_{1}(x)\right\rangle}{\left\langle P_{1}(x), P_{1}(x)\right\rangle} P_{1}(x)-\frac{\left\langle x^{n}, P_{0}(x)\right\rangle}{\left\langle P_{0}(x), P_{0}(x)\right\rangle} P_{0}(x) .
$$

Solution - Because of property (i), we know that $\left\{P_{0}(x), P_{1}(x), \ldots, P_{n}(x)\right\}$ forms a basis for $\mathrm{P}_{n}(\mathbb{R})$, so we know that there are unique scalars $a_{0}, a_{1}, \ldots, a_{n}$ such that

$$
x^{n}=a_{0} P_{0}(x)+a_{1} P_{1}(x)+\cdots a_{n} P_{n}(x) .
$$

By the orthogonality relations (iii), we see that

$$
\left\langle x^{n}, P_{0}(x)\right\rangle=a_{0}\left\langle P_{0}(x), P_{0}(x)\right\rangle, \quad\left\langle x^{n}, P_{1}(x)\right\rangle=a_{1}\left\langle P_{1}(x), P_{1}(x)\right\rangle, \quad \ldots
$$

Therefore,

$$
\begin{aligned}
x^{n} & -\frac{\left\langle x^{n}, P_{n-1}(x)\right\rangle}{\left\langle P_{n-1}(x), P_{n-1}(x)\right\rangle} P_{n-1}(x)-\cdots-\frac{\left\langle x^{n}, P_{1}(x)\right\rangle}{\left\langle P_{1}(x), P_{1}(x)\right\rangle} P_{1}(x)-\frac{\left\langle x^{n}, P_{0}(x)\right\rangle}{\left\langle P_{0}(x), P_{0}(x)\right\rangle} P_{0}(x) \\
& =x^{n}-a_{n-1} P_{n-1}(x)-\cdots-a_{1} P_{1}(x)-a_{0} P_{0}(x)=a_{n} P_{n}(x) .
\end{aligned}
$$

Since $\operatorname{deg}\left(x^{n}\right)=n$, we cannot have $a_{n}=0$ and hence $P_{n}(x)$ is $1 / a_{n}$ times the given polynomial.
3.- Use the above to compute $P_{2}(x), P_{3}(x), P_{4}(x), P_{5}(x)$.

Solution - We know that $P_{2}(x)$ is a scalar multiple of

$$
x^{2}-\frac{\left\langle x^{2}, P_{1}(x)\right\rangle}{\left\langle P_{1}(x), P_{1}(x)\right\rangle} P_{1}(x)-\frac{\left\langle x^{2}, P_{0}(x)\right\rangle}{\left\langle P_{0}(x), P_{0}(x)\right\rangle} P_{0}(x)=x^{2}-\frac{1}{3} .
$$

Since we need $P_{2}(1)=1$ per (ii), we see that

$$
P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2} .
$$

Similarly, we know that $P_{3}(x)$ is a scalar multiple of

$$
x^{3}-\frac{2}{5} x .
$$

Therefore,

$$
P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x .
$$

Repeating this process, we find that

$$
\begin{aligned}
& P_{4}(x)=\frac{35}{8} x^{4}-\frac{15}{4} x^{2}+\frac{3}{8} \\
& P_{5}(x)=\frac{63}{8} x^{5}-\frac{35}{4} x^{3}+\frac{15}{8} x .
\end{aligned}
$$

