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MATH 24 — SPRING 2014

Sample Solutions

(A) A the harmonics of a vibrating string of length one are describe by the functions

sin(nπx), n = 1, 2, 3, . . .

on the unit interval [0, 1].

An actual vibrating string will typically overlay several harmonic vibrations resulting in more
complex patterns that are represented by linear combinations of harmonics:

h(x) = a1 sin(πx) + a2 sin(2πx) + a3 sin(3πx) + a4 sin(4πx) + · · ·

The theory of inner product spaces allows us to recover the amplitudes a1, a2, a3, . . . of the
components of the vibration pattern h(x).

1.– Show that the functions sin(πx), sin(2πx), sin(3πx), . . . form an orthogonal family with
respect to the inner product 〈f, g〉 =

∫ 1

0
f(x)g(x) dx on the space of continuous functions

on the unit interval [0, 1].

Solution — Using the identity 2 sin(α) sin(β) = cos(α− β)− cos(α + β), we get∫ 1

0

sin(nπx) sin(mπx) dx =
1

2

∫ 1

0

cos((n−m)πx) dx− 1

2

∫ 1

0

cos((m+ n)πx).

If k is a nonzero integer, then∫ 1

0

cos(kπx) dx =
1

kπ
sin(kπ1)− 1

kπ
sin(kπ0) = 0.

So if m 6= n then ∫ 1

0

sin(nπx) sin(mπx) dx = 0.

However, then ∫ 1

0

sin2(nπx) dx =
1

2

∫ 1

0

dx =
1

2
.

So the functions sin(nπx) are orthogonal to each other with respect to the inner product
〈f, g〉 =

∫ 1

0
f(x)g(x) dx. So they do form an orthogonal family, but since they are not

unit vectors they do not form an orthonormal family.



2.– Explain how to use this to recover the amplitudes a1, a2, a3, . . . of a given vibration pat-
tern h(x).

Solution — Knowing that

h(x) = a1 sin(πx) + a2 sin(2πx) + a3 sin(3πx) + a4 sin(4πx) + · · ·

we see that

〈h(x), sin(πx)〉 = a1〈sin(πx), sin(πx)〉+ a2〈sin(2πx), sin(πx)〉+ a3〈sin(3πx), sin(πx)〉+ · · ·

= a1〈sin(πx), sin(πx)〉 =
a1
2
.

Similarly,
〈h(x), sin(2πx)〉 = a2

2
, 〈h(x), sin(3πx)〉 = a3

2
, . . .

In general, the formula

an = 2〈h(x), sin(nπx)〉 = 2

∫ 1

0

h(x) sin(nπx) dx

allows us to recover the coefficients a1, a2, a3, . . .

(B) The Legendre Polynomials are a family of polynomials P0(x), P1(x), P2(x), . . . with the fol-
lowing three properties:

(i) deg(Pn(x)) = n,

(ii) Pn(1) = 1,

(iii)
∫ 1

−1
Pn(x)Pm(x) dx = 0 when m 6= n.

These three properties uniquely determine these polynomials! For example the first two prop-
erties dictate that P0(x) is the constant polynomial 1. For P1(x), the first two properties
dictate that this is a linear function through the point (1, 1). The third property entails that∫ 1

−1
P1(x) dx = 0; the only possibility is P1(x) = x.

1.– Show that 〈f(x), g(x)〉 =
∫ 1

−1
f(x)g(x) dx is an inner product on P(R), the vector space

of all polynomials with coefficients in R.

Solution — Since 〈f(x), g(x)〉 =
∫ 1

−1
f(x)g(x) dx defines an inner product on the space

of continuous functions on the interval [−1, 1] and polynomials define continuous func-
tions, we see that 〈•, •〉 is symmetric bilinear and 〈f(x), f(x)〉 ≥ 0 for all f(x) ∈ P(R).
It is not immediately clear that 〈f(x), f(x)〉 = 0 implies that f(x) is the zero polyno-
mials since all we know is that if 〈f(x), f(x)〉 = 0 then f(x) = 0 for all x ∈ [−1, 1].
However, since [−1, 1] is infinite, this does tell us that f(x) has more than deg(f(x))
roots. Since a nonzero polynomial has no more than deg(f(x)) roots, we conclude that
〈f(x), f(x)〉 = 0 does imply that f(x) is the zero polynomial.



2.– Show that Pn(x) must be a scalar multiple of

xn − 〈xn, Pn−1(x)〉
〈Pn−1(x), Pn−1(x)〉

Pn−1(x)− · · · −
〈xn, P1(x)〉
〈P1(x), P1(x)〉

P1(x)−
〈xn, P0(x)〉
〈P0(x), P0(x)〉

P0(x).

Solution — Because of property (i), we know that {P0(x), P1(x), . . . , Pn(x)} forms a
basis for Pn(R), so we know that there are unique scalars a0, a1, . . . , an such that

xn = a0P0(x) + a1P1(x) + · · · anPn(x).

By the orthogonality relations (iii), we see that

〈xn, P0(x)〉 = a0〈P0(x), P0(x)〉, 〈xn, P1(x)〉 = a1〈P1(x), P1(x)〉, . . .

Therefore,

xn − 〈xn, Pn−1(x)〉
〈Pn−1(x), Pn−1(x)〉

Pn−1(x)− · · · −
〈xn, P1(x)〉
〈P1(x), P1(x)〉

P1(x)−
〈xn, P0(x)〉
〈P0(x), P0(x)〉

P0(x)

= xn − an−1Pn−1(x)− · · · − a1P1(x)− a0P0(x) = anPn(x).

Since deg(xn) = n, we cannot have an = 0 and hence Pn(x) is 1/an times the given
polynomial.

3.– Use the above to compute P2(x), P3(x), P4(x), P5(x).

Solution — We know that P2(x) is a scalar multiple of

x2 − 〈x2, P1(x)〉
〈P1(x), P1(x)〉

P1(x)−
〈x2, P0(x)〉
〈P0(x), P0(x)〉

P0(x) = x2 − 1

3
.

Since we need P2(1) = 1 per (ii), we see that

P2(x) =
3

2
x2 − 1

2
.

Similarly, we know that P3(x) is a scalar multiple of

x3 − 2

5
x.

Therefore,

P3(x) =
5

2
x3 − 3

2
x.

Repeating this process, we find that

P4(x) =
35

8
x4 − 15

4
x2 +

3

8
,

P5(x) =
63

8
x5 − 35

4
x3 +

15

8
x.


