
Worksheet for May 8

MATH 24 — SPRING 2014

Sample Solutions

Recall that Z2 is the field with exactly two elements, 0 and 1. The addition and multiplication rules
for Z2 are summarized in the followng two tables:

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

A good mnemonic to remember this is to think of 0 as meaning ‘even’ and 1 as meaning ‘odd’. So
1+ 1 = 0 because two odd numbers add to an even number and 1× 0 = 0 because an odd number
times an even number results in an even number.

(A) How many polynomials of degree n with coefficients in Z2 are there? How many of them
split over Z2?

Solution — A polynomial of degree n has the form

cnt
n + cn−1t

n−1 + · · ·+ c1t+ c0

where cn 6= 0. Since coefficients are in Z2, we must have cn = 1 and we have two choices
for each of cn−1, . . . , c1, c0. Combining all these choices, we see that there are exactly 2n

polynomials of degree n with coefficients in Z2.

In order to split over Z2, a polynomial of degree n must have the form (t− 0)m0(t− 1)m1 =
tm0(t+1)m1 wherem0+m1 = n. There are n+1 possibilities form0+m1 = n, each of which
gives rise to a different polynomial since the smallest nonzero coefficient of the expansion of
tm0(t+ 1)m1 is the coefficient of tm0 .

Since n + 1 is much smaller than 2n, very few polynomials with coefficients in Z2 split
completely into linear factors. In fact, fewer than 1% of polynomials of degree 11 split and
fewer than 0.01% of polynomials of degree 18 split.

(B) Consider the following three matrices over the two-element field Z2:

A =

0 0 0
1 1 0
0 0 1

 , B =

0 0 0
1 1 1
1 0 0

 , C =

0 0 1
1 0 0
0 1 0

 .



1.– Compute the characteristic polynomials of A,B,C.

Solution —
det(A− tI) = t3 + t = t(t+ 1)2,

det(B − tI) = t3 + t2 = t2(t+ 1),

det(C − tI) = t3 + 1 = (t+ 1)(t2 + t+ 1).

Note that t2 + t+ 1 has no roots in Z2 so it doesn’t factor any further.

2.– Compute bases for the eigenspaces of A,B,C.

Solution — For A, we have

E0 = N(LA) = span{(1, 1, 0)}

and
E1 = N(LA − I) = span{(0, 1, 0), (0, 0, 1)}.

For B, we have
E0 = N(LB) = span{(0, 1, 1)}

and
E1 = N(LB − I) = span{(0, 1, 0)}.

For C, we have E0 = {0} since 0 is not an eigenvalue, but

E1 = N(LC − I) = span{(1, 1, 1)}.

3.– If possible, find an invertible matrix Q such that QAQ−1 is diagonal. Do the same for B
and C.

Solution — Only A is diagonalizable. For B, the algebraic and geometric multiplicities
of 0 do not agree. For C, the characteristic polynomial does not split completely into
linear factors.
From above, an eigenbasis for A is β = {(1, 1, 0), (0, 1, 0), (0, 0, 1)}. The change of
coordinates matrix from β-coordinates to standard coordinates is

Q−1 =

1 0 0
1 1 0
0 0 1

 ,

which is actually its own inverse.
To be sure, we can check that

QAQ−1 =

0 0 0
0 1 0
0 0 1

 .

(C) Let A,B,C be the same matrices as above.



1.– Use Theorem 5.22 to find a basis for the LA-cyclic subspace generated by e1.

Solution — For A, we find that e1 = (1, 0, 0), Ae1 = (0, 1, 0), are linearly independent
but A2e1 = Ae1. So {(1, 0, 0), (0, 1, 0)} is a basis for the LA cyclic subspace generated
by e1.
ForB, we find that e1 = (1, 0, 0), Be1 = (0, 1, 1), are linearly independent butB2e1 = 0.
So {(1, 0, 0), (0, 1, 1)} is a basis for the LB cyclic subspace generated by e1.
For C, we find that e1 = (1, 0, 0), Ce1 = (0, 1, 0), C2e1 = (0, 0, 1) are linearly indepen-
dent but C3e1 = e1. So {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis for the LC cyclic subspace
generated by e1.

2.– Verify Theorem 5.21 for the LA-invariant subspace you just computed.

Solution — Using 5.22 and the fact that A2e1 + Ae1 = 0, we arrive at the characteristic
polynomial t2+ t = t(t+1) for the restriction of LA to the LA cyclic subspace generated
by e1. This is visibly a factor of the characteristic polynomial t(t+ 1)2 we found earlier.
Using 5.22 and the fact that B2e1 = 0, we arrive at the characteristic polynomial t2 for
the restriction of LB to the LB cyclic subspace generated by e1. This is visibly a factor of
the characteristic polynomial t2(t+ 1) we found earlier.
Using 5.22 and the fact that C3e1 = e1, we arrive at the characteristic polynomial t3 + 1
for the restriction of LC to the LC cyclic subspace generated by e1. This is visibly a factor
of the characteristic polynomial t3 + 1 we found earlier.

Repeat for LB and LC .


