Worksheet for May 8

Math 24 - Spring 2014

Sample Solutions

Recall that \mathbb{Z}_{2} is the field with exactly two elements, 0 and 1 . The addition and multiplication rules for \mathbb{Z}_{2} are summarized in the followng two tables:

$$
\begin{array}{c|cc}
+ & 0 & 1 \\
\hline 0 & 0 & 1 \\
1 & 1 & 0
\end{array}
$$

$$
\begin{array}{c|cc}
\times & 0 & 1 \\
\hline 0 & 0 & 0 \\
1 & 0 & 1
\end{array}
$$

A good mnemonic to remember this is to think of 0 as meaning 'even' and 1 as meaning 'odd'. So $1+1=0$ because two odd numbers add to an even number and $1 \times 0=0$ because an odd number times an even number results in an even number.
(A) How many polynomials of degree n with coefficients in \mathbb{Z}_{2} are there? How many of them split over \mathbb{Z}_{2} ?

Solution - A polynomial of degree n has the form

$$
c_{n} t^{n}+c_{n-1} t^{n-1}+\cdots+c_{1} t+c_{0}
$$

where $c_{n} \neq 0$. Since coefficients are in \mathbb{Z}_{2}, we must have $c_{n}=1$ and we have two choices for each of $c_{n-1}, \ldots, c_{1}, c_{0}$. Combining all these choices, we see that there are exactly 2^{n} polynomials of degree n with coefficients in \mathbb{Z}_{2}.
In order to split over \mathbb{Z}_{2}, a polynomial of degree n must have the form $(t-0)^{m_{0}}(t-1)^{m_{1}}=$ $t^{m_{0}}(t+1)^{m_{1}}$ where $m_{0}+m_{1}=n$. There are $n+1$ possibilities for $m_{0}+m_{1}=n$, each of which gives rise to a different polynomial since the smallest nonzero coefficient of the expansion of $t^{m_{0}}(t+1)^{m_{1}}$ is the coefficient of $t^{m_{0}}$.
Since $n+1$ is much smaller than 2^{n}, very few polynomials with coefficients in \mathbb{Z}_{2} split completely into linear factors. In fact, fewer than 1% of polynomials of degree 11 split and fewer than 0.01% of polynomials of degree 18 split.
(B) Consider the following three matrices over the two-element field \mathbb{Z}_{2} :

$$
A=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad B=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right), \quad C=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

1.- Compute the characteristic polynomials of A, B, C.

Solution -

$$
\begin{aligned}
\operatorname{det}(A-t I) & =t^{3}+t=t(t+1)^{2} \\
\operatorname{det}(B-t I) & =t^{3}+t^{2}=t^{2}(t+1) \\
\operatorname{det}(C-t I) & =t^{3}+1=(t+1)\left(t^{2}+t+1\right)
\end{aligned}
$$

Note that $t^{2}+t+1$ has no roots in \mathbb{Z}_{2} so it doesn't factor any further.
2.- Compute bases for the eigenspaces of A, B, C.

Solution - For A, we have

$$
\mathrm{E}_{0}=\mathrm{N}\left(L_{A}\right)=\operatorname{span}\{(1,1,0)\}
$$

and

$$
\mathrm{E}_{1}=\mathrm{N}\left(L_{A}-I\right)=\operatorname{span}\{(0,1,0),(0,0,1)\}
$$

For B, we have

$$
\mathrm{E}_{0}=\mathrm{N}\left(L_{B}\right)=\operatorname{span}\{(0,1,1)\}
$$

and

$$
\mathrm{E}_{1}=\mathrm{N}\left(L_{B}-I\right)=\operatorname{span}\{(0,1,0)\}
$$

For C, we have $\mathrm{E}_{0}=\{0\}$ since 0 is not an eigenvalue, but

$$
\mathrm{E}_{1}=\mathrm{N}\left(L_{C}-I\right)=\operatorname{span}\{(1,1,1)\}
$$

3.- If possible, find an invertible matrix Q such that $Q A Q^{-1}$ is diagonal. Do the same for B and C.

Solution - Only A is diagonalizable. For B, the algebraic and geometric multiplicities of 0 do not agree. For C, the characteristic polynomial does not split completely into linear factors.
From above, an eigenbasis for A is $\beta=\{(1,1,0),(0,1,0),(0,0,1)\}$. The change of coordinates matrix from β-coordinates to standard coordinates is

$$
Q^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

which is actually its own inverse.
To be sure, we can check that

$$
Q A Q^{-1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(C) Let A, B, C be the same matrices as above.
1.- Use Theorem 5.22 to find a basis for the L_{A}-cyclic subspace generated by e_{1}.

Solution - For A, we find that $e_{1}=(1,0,0), A e_{1}=(0,1,0)$, are linearly independent but $A^{2} e_{1}=A e_{1}$. So $\{(1,0,0),(0,1,0)\}$ is a basis for the L_{A} cyclic subspace generated by e_{1}.
For B, we find that $e_{1}=(1,0,0), B e_{1}=(0,1,1)$, are linearly independent but $B^{2} e_{1}=0$. So $\{(1,0,0),(0,1,1)\}$ is a basis for the L_{B} cyclic subspace generated by e_{1}.
For C, we find that $e_{1}=(1,0,0), C e_{1}=(0,1,0), C^{2} e_{1}=(0,0,1)$ are linearly independent but $C^{3} e_{1}=e_{1}$. So $\{(1,0,0),(0,1,0),(0,0,1)\}$ is a basis for the L_{C} cyclic subspace generated by e_{1}.
2.- Verify Theorem 5.21 for the L_{A}-invariant subspace you just computed.

Solution - Using 5.22 and the fact that $A^{2} e_{1}+A e_{1}=0$, we arrive at the characteristic polynomial $t^{2}+t=t(t+1)$ for the restriction of L_{A} to the L_{A} cyclic subspace generated by e_{1}. This is visibly a factor of the characteristic polynomial $t(t+1)^{2}$ we found earlier. Using 5.22 and the fact that $B^{2} e_{1}=0$, we arrive at the characteristic polynomial t^{2} for the restriction of L_{B} to the L_{B} cyclic subspace generated by e_{1}. This is visibly a factor of the characteristic polynomial $t^{2}(t+1)$ we found earlier.
Using 5.22 and the fact that $C^{3} e_{1}=e_{1}$, we arrive at the characteristic polynomial $t^{3}+1$ for the restriction of L_{C} to the L_{C} cyclic subspace generated by e_{1}. This is visibly a factor of the characteristic polynomial $t^{3}+1$ we found earlier.

Repeat for L_{B} and L_{C}.

