Worksheet for May 1

MATH 24 - SPRING 2014

Sample Solutions

(A) Let $A=\left(\begin{array}{ccc}-1 & -4 & 1 \\ 2 & 2 & 0 \\ -3 & 0 & 2\end{array}\right)$.
1.- Compute the determinant of A using cofactor expansion.

Solution - We can do cofactor expansion along any row or column; those with some zeros save you some work.
Along the second row we have:

$$
\begin{aligned}
\sum_{j=1}^{3}(-1)^{2+j} A_{2 j} \operatorname{det}\left(\widetilde{A}_{2 j}\right) & =-2 \operatorname{det}\left(\begin{array}{cc}
-4 & 1 \\
0 & 2
\end{array}\right)+2 \operatorname{det}\left(\begin{array}{ll}
-1 & 1 \\
-3 & 2
\end{array}\right) \\
& =-2((-4)(2)-(0)(1))+2((-1)(2)-(-3)(1))=18
\end{aligned}
$$

2.- Using only type 1 and type 3 row operations, make A into an upper triangular matrix U.

Solution - We can manage only with type 3 row operations. After adding 2 times the first row to the second and then adding -3 times the first row to the third, we obtain:

$$
\left(\begin{array}{ccc}
-1 & -4 & 1 \\
0 & -6 & 0 \\
0 & 12 & -1
\end{array}\right)
$$

Finally, adding -2 times the second row to the third, we obtain the upper triangular matrix:

$$
U=\left(\begin{array}{ccc}
-1 & -4 & 1 \\
0 & -6 & 2 \\
0 & 0 & 3
\end{array}\right)
$$

3.- Verify that $\operatorname{det}(A)=(-1)^{n} \operatorname{det}(U)$ where n is the number of type 1 row operations you performed in part 2.

Solution - Indeed, $18=(-1)(-6)(3)$.
(B) Given a $n \times n$ matrix A, let C be the matrix of cofactors of A. That is $C_{i j}=(-1)^{i+j} \operatorname{det}\left(\widetilde{A}_{i j}\right)$, where $\widetilde{A}_{i j}$ is obtained from A by deleting the i-th row and the j-th column.
1.- Explain why the (i, j)-th entry of $A C^{t}$ is

$$
\sum_{k=1}^{n}(-1)^{j+k} A_{i k} \operatorname{det}\left(\widetilde{A}_{j k}\right)
$$

Solution - In general, the (i, j)-th entry of $A B$ is

$$
\sum_{k=1}^{n} A_{i k} B_{k j} .
$$

If $B=C^{t}$, then the (k, j)-th entry of B is the (j, k)-th entry of C, that is

$$
B_{k j}=(-1)^{j+k} \operatorname{det}\left(\widetilde{A}_{j k}\right)
$$

The desired formula follows immediately.
2.- Explain why

$$
\sum_{k=1}^{n}(-1)^{j+k} A_{i k} \operatorname{det}\left(\widetilde{A}_{j k}\right)=0
$$

when $i \neq j$. (Hint: Suppose, for the purpose of a thought experiment, that the j-th row of A is identical to the i-th row of A. What would be the cofactor expansion of $\operatorname{det}(A)$ along the j-th row?)

Solution - If the i-th and j-th rows of A are indeed identical, then by cofactor expansion along the j-th row

$$
\begin{aligned}
\operatorname{det}(A) & =\sum_{k=1}^{n}(-1)^{j+k} A_{j k} \operatorname{det}\left(\widetilde{A}_{j k}\right) \\
& =\sum_{k=1}^{n}(-1)^{j+k} A_{i k} \operatorname{det}\left(\widetilde{A}_{j k}\right) .
\end{aligned}
$$

But $\operatorname{det}(A)=0$ since A has two identical rows.
3.- Explain why $A C^{t}=\operatorname{det}(A) I$ where I is the $n \times n$ identity matrix.

Solution - The previous parts tell us that the off-diagonal entries of $A C^{t}$ are all zeros. For the (i, i)-th entry, we have

$$
\sum_{k=1}^{n}(-1)^{i+k} A_{i k} \operatorname{det}\left(\widetilde{A}_{i k}\right)
$$

which is the cofactor expansion along the i-th row of A. So all the diagonal entries equal $\operatorname{det}(A)$.
4.- Conclude that if $\operatorname{det}(A) \neq 0$ then A is invertible and $A^{-1}=\frac{1}{\operatorname{det}(A)} C^{t}$.

Solution - The last part tells us that if $\operatorname{det}(A) \neq 0$ then

$$
A\left(\frac{1}{\operatorname{det}(A)} C^{t}\right)=\frac{1}{\operatorname{det}(A)}\left(A C^{t}\right)=\frac{1}{\operatorname{det}(A)} \operatorname{det}(A) I=I
$$

Since A is a square matrix with a right inverse, it is invertible and A^{-1} is the right inverse $\frac{1}{\operatorname{det}(A)} C^{t}$.

