# Worksheet for April 28 

## Math 24 - Spring 2014

## Sample Solutions

As a warm up, let's prove a useful fact about matrix multiplication.
Theorem. Suppose $A$ is a $p \times q$-matrix and $B$ is a $q \times r$ matrix, over the same field $F$.
(a) If the columns of $B$ are $v_{1}, v_{2}, \ldots, v_{r}$ then the columns of $A B$ are $A v_{1}, A v_{2}, \ldots, A v_{r}$.
(b) Every linear dependency between the columns of $B$ also holds between the same columns of $A B$.

Proof. For (a), recall that the $i$-th column of $A B$ is simply $(A B) e_{i}$. Because matrix multiplication is associative, we have $(A B) e_{i}=A\left(B e_{i}\right)=A v_{i}$ since $B e_{i}$ is the $i$-th column of $B$.

For (b), suppose that $c_{1}, c_{2}, \ldots, c_{r}$ are scalars such that

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{r} v_{r}=0
$$

Then, using distributivity of matrix multiplication and the fact that scalar multiplication commutes with matrix multiplication:

$$
\begin{aligned}
0=A\left(c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{r} v_{r}\right) & =A\left(c_{1} v_{1}\right)+A\left(c_{2} v_{2}\right)+\cdots+A\left(c_{r} v_{r}\right) \\
& =c_{1}\left(A v_{1}\right)+c_{2}\left(A v_{2}\right)+\cdots+c_{r}\left(A v_{r}\right) .
\end{aligned}
$$

Therefore, the exact same linear dependency holds between the columns of $A B$.
Now let $A$ be the $4 \times 6$ matrix

$$
\left(\begin{array}{rrrrrr}
4 & -1 & 5 & 7 & 4 & -1 \\
0 & 2 & -2 & 2 & -5 & 7 \\
3 & -4 & 7 & 2 & 2 & -3 \\
1 & 6 & -5 & 8 & -3 & 10
\end{array}\right)
$$

over the field $\mathbb{C}$. Suppose after some elementary row operations starting from $A$, you obtained the matrix

$$
\left(\begin{array}{rrrrrr}
1 & 0 & 1 & 2 & 0 & 1 \\
0 & 1 & -1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

1.- Show that there is an invertible matrix $Q$ such that

$$
Q A=\left(\begin{array}{cccccc}
1 & 0 & 1 & 2 & 0 & 1 \\
0 & 1 & -1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Solution - After Theorem 3.1, the matrix $Q$ is the product of the elementary matrices corresponding to the elementary row operations performed on $A$ to obtain the new matrix.
By Theorem 3.2, elementary matrices are invertible. By Exercise 4 of Section 2.4, products of invertible matrices are invertible. It follows that $Q$ is invertible.
2.- Show that the third and fourth columns of $A$ are linear combinations of the first two columns of $A$.

Solution - This is clear for $Q A$ where the first two columns are $e_{1}$ and $e_{2}$, respectively, and the third and fourth columns of $Q A$ are $e_{1}-e_{2}$ and $2 e_{1}+e_{2}$, respectively.
By part (b) of the Theorem, the exact same relations must hold between the corresponding columns of $A=Q^{-1}(Q A)$.
3.- Show that the fifth column of $A$ is not a linear combination of the first two columns of $A$.

Solution - This is clear for $Q A$ where the first two columns are $e_{1}$ and $e_{2}$, respectively, and the fifth column is $e_{3}$ - three linearly independent vectors.
If there were a nontrivial linear dependency between the first, second and fifth columns of $A$, then the same would hold between the same columns of $Q A$ by part (b) of the Theorem. Therefore, the first, second and fifth columns of $A$ must be linearly independent.
4.- Show that the first, second and fifth columns of $A$ form a basis for the subspace of $\mathbb{R}^{4}$ generated by the columns of $A$.

Solution - We have just observed that they are linearly independent. Since $\operatorname{rank}(A)=3$, they must form a basis for $\mathrm{R}\left(L_{A}\right)$, subspace of $\mathbb{R}^{4}$ generated by the columns of $A$.
5.- Suppose that $P$ is an invertible matrix such that the first two columns of $P A$ are $e_{1}$ and $e_{2}$, respectively. Show that the third and fourth columns of $P A$ must then be $e_{1}-e_{2}$ and $2 e_{1}+e_{2}$, respectively.

Solution - Let $v_{1}, v_{2}, v_{3}, v_{4}$ denote the first four columns of $A$. We have observed in part 2 that $v_{3}=v_{1}-v_{2}$ and $v_{4}=2 v_{1}+v_{2}$.
By part (a) of the Theorem, the first four columns of $P A$ are $P v_{1}, P v_{2}, P v_{3}, P v_{4}$. Therefore,

$$
P v_{3}=P\left(v_{1}-v_{2}\right)=P v_{1}-P v_{2}=e_{1}-e_{2}
$$

and

$$
P v_{4}=P\left(2 v_{1}+v_{2}\right)=2 P v_{1}+P v_{2}=2 e_{1}+e_{2} .
$$

