Worksheet for April 24

Math 24 - Spring 2014

Sample Solutions

Consider the system of linear equations

$$
\begin{aligned}
3 x_{2}-6 x_{3}+6 x_{4}+4 x_{5} & =-5, \\
3 x_{1}-7 x_{2}+8 x_{3}-5 x_{4}+8 x_{5} & =9, \\
3 x_{1}-9 x_{2}+12 x_{3}-9 x_{4}+6 x_{5} & =15 .
\end{aligned}
$$

1.- Let A be the matrix of coefficients of this system, form the augmented matrix $\left(A \mid I_{3}\right)$, and convert it into row echelon form using a sequence of elementary row operations.

Solution - There are many ways to achieve this. Here is one sequence of row operations that works:

$$
\left(\begin{array}{ccccc|ccc}
0 & 3 & -6 & 6 & 4 & 1 & 0 & 0 \\
3 & -7 & 8 & -5 & 8 & 0 & 1 & 0 \\
3 & -9 & 12 & -9 & 6 & 0 & 0 & 1
\end{array}\right)
$$

(i) Add -1 times the third row from the second:

$$
\left(\begin{array}{ccccc|ccc}
0 & 3 & -6 & 6 & 4 & 1 & 0 & 0 \\
0 & 2 & -4 & 4 & 2 & 0 & 1 & -1 \\
3 & -9 & 12 & -9 & 6 & 0 & 0 & 1
\end{array}\right)
$$

(ii) Exchange the first and third rows:

$$
\left(\begin{array}{ccccc|ccc}
3 & -9 & 12 & -9 & 6 & 0 & 0 & 1 \\
0 & 2 & -4 & 4 & 2 & 0 & 1 & -1 \\
0 & 3 & -6 & 6 & 4 & 1 & 0 & 0
\end{array}\right)
$$

(iii) Add $-3 / 2$ times the second row to the third:

$$
\left(\begin{array}{ccccc|ccc}
3 & -9 & 12 & -9 & 6 & 0 & 0 & 1 \\
0 & 2 & -4 & 4 & 2 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & 1 & -3 / 2 & 3 / 2
\end{array}\right)
$$

Note that the augmented part accumulates the product of the three elementary matrices corresponding to the operations above:

$$
\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & -1 \\
1 & -3 / 2 & 3 / 2
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 / 2 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

2.- Suppose you obtained $(B \mid C)$ after part 1 . Solve the system

$$
B\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=C\left(\begin{array}{c}
-5 \\
9 \\
15
\end{array}\right)
$$

Check that your solutions are also solutions of the original system of linear equations.

Solution - From the above, we have the system:

$$
\begin{aligned}
3 x_{1}-9 x_{2}+12 x_{3}-9 x_{4}+6 x_{5} & =15 \\
2 x_{2}-4 x_{3}+4 x_{4}+2 x_{5} & =-6 \\
x_{5} & =4 .
\end{aligned}
$$

This system has infinitely many solutions, one of which is $s_{0}=(-24,-7,0,0,4)$. The other solutions are of the form $s_{0}+s_{h}$ where s_{h} is in the null space of left multiplication by B.

Because C is invertible, with inverse

$$
C^{-1}=\left(\begin{array}{ccc}
0 & 3 / 2 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

and $B=C A$, the two systems have the exact same solutions. Indeed, if $B\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=$ $(15,-6,4)$ then

$$
A\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=C^{-1} B\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=C^{-1}\left(\begin{array}{c}
15 \\
-6 \\
4
\end{array}\right)=\left(\begin{array}{c}
-5 \\
9 \\
15
\end{array}\right)
$$

Indeed, if $A\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(-5,9,15)$ then

$$
B\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=C A\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=C\left(\begin{array}{c}
-5 \\
9 \\
15
\end{array}\right)=\left(\begin{array}{c}
15 \\
-6 \\
4
\end{array}\right)
$$

If you have multiple systems $A x=b$ to solve, each with the same coefficient matrix but different target vectors b, this process is a very economical way to solve all of them. Indeed, $C b$ is easy to compute and, since B is in echelon form, the equivalent system $B x=C b$ is easy to solve. However, if you only have one system $A x=b$ to solve, finding an echelon form for the augmented matrix $(A \mid b)$ as described in section 3.4 is not any longer.
3.- Continue from the echelon form for A you obtained in part 1 and find the reduced row echelon form of A using some more elementary row operations.

Solution - After some steps, we obtain that the reduced row echelon form of A is

$$
\left(\begin{array}{ccccc}
1 & 0 & -2 & 3 & 0 \\
0 & 1 & -2 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-5 & 9 & 26 / 3 \\
-1 & 2 & -2 \\
1 & -3 / 2 & 3 / 2
\end{array}\right) A .
$$

4.- Looking at the reduced row echelon form of A you obtained in part 3, explain how you can reach the conclusion that

$$
\left(\begin{array}{c}
-6 \\
8 \\
12
\end{array}\right)=-2\left(\begin{array}{l}
0 \\
3 \\
3
\end{array}\right)-2\left(\begin{array}{c}
3 \\
-7 \\
-9
\end{array}\right)
$$

and

$$
\left(\begin{array}{c}
6 \\
-5 \\
-9
\end{array}\right)=3\left(\begin{array}{l}
0 \\
3 \\
3
\end{array}\right)+2\left(\begin{array}{c}
3 \\
-7 \\
-9
\end{array}\right)
$$

Solution - From the reduced row echelon form of A, we see that the homogeneous system $A x=0$ is equivalent to the simple system

$$
\begin{aligned}
& x_{1}=2 x_{3}-3 x_{4}, \\
& x_{2}=2 x_{3}-2 x_{4}, \\
& x_{5}=0 .
\end{aligned}
$$

Choosing $x_{3}=-1, x_{4}=0$, we obtain the solution $(-2,-2,-1,0,0)=-2 e_{1}-2 e_{2}-e_{3}$, which means that

$$
-2 A e_{1}-2 A e_{2}-A e_{3}=0 \quad \text { or } \quad A e_{3}=-2 A e_{1}-2 A e_{2}
$$

Since $A e_{1}, A e_{2}, A e_{3}$ are the first three columns of A, we obtain

$$
\left(\begin{array}{c}
-6 \\
8 \\
12
\end{array}\right)=-2\left(\begin{array}{l}
0 \\
3 \\
3
\end{array}\right)-2\left(\begin{array}{c}
3 \\
-7 \\
-9
\end{array}\right) .
$$

Choosing $x_{3}=0, x_{4}=-1$, we obtain the solution $(3,2,0,-1,0)=3 e_{1}+2 e_{2}-e_{4}$, which means that

$$
3 A e_{1}+2 A e_{2}-A e_{4}=0 \quad \text { or } \quad A e_{4}=3 A e_{1}+2 A e_{2} .
$$

Since $A e_{1}, A e_{2}, A e_{3}$ are the first, second and fourth columns of A, we obtain

$$
\left(\begin{array}{c}
6 \\
-5 \\
-9
\end{array}\right)=3\left(\begin{array}{l}
0 \\
3 \\
3
\end{array}\right)+2\left(\begin{array}{c}
3 \\
-7 \\
-9
\end{array}\right)
$$

This process is completely general: looking at the reduced row echelon form B of a $m \times n$ matrix A, if the i-th column $B e_{i}$ has no pivot then the entries of $B e_{i}$ spell out a way to write the i-th column $A e_{i}$ as a linear combination of columns $A e_{1}, \ldots, A e_{i-1}$. It follows from this that the columns of A that correspond to pivots in B generate the column space $\operatorname{span}\left\{A e_{1}, A e_{2}, \ldots, A e_{n}\right\}$. In fact, they always form a basis for the column space since the rank of A equals the number of pivots in B.

