Worksheet for April 21

Math 24 - Spring 2014

Sample Solutions

(A) For each of the elementary row operations below, (a) find the elementary matrix E such that $E A$ is the result of the row operation on the 3×5 matrix A, (b) find the elementary matrix \bar{E} corresponding to the inverse operation so that $\bar{E} E A$ results in the original 3×5 matrix A, (c) check that $\bar{E} E=I_{3}$.
1.- Multiplying the second row by the nonzero scalar a.
2.- Exchanging the second and third rows.
3.- Adding a times the first row to the third row.

Solution - 1.- The inverse of 'multiplying the second row by the nonzero scalar a ' is 'multiplying the second row by the nonzero scalar $1 / a$.'

$$
E=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & a & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad \bar{E}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / a & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

2.- Exchanging the second and third rows is its own inverse!

$$
E=\bar{E}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

3.- The inverse of 'adding a times the first row to the third row' is 'subtracting a times the first row to the third row.'

$$
E=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
a & 0 & 1
\end{array}\right) \quad \text { and } \quad \bar{E}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-a & 0 & 1
\end{array}\right) .
$$

(B) Let

$$
A=\left(\begin{array}{ccc}
1 & -3 & 0 \\
-1 & 0 & 0 \\
2 & -6 & 1
\end{array}\right)
$$

be a 3×3 matrix over \mathbb{R}.
1.- By performing a sequence of elementary row operations on A, find a sequence of elementary matrices $E_{1}, E_{2}, \ldots, E_{k}$ such that $E_{k} \cdots E_{2} E_{1} A=I_{3}$.
2.- Find the corresponding sequence $\bar{E}_{1}, \bar{E}_{2}, \ldots, \bar{E}_{k}$ of elementary matrices representing the inverse row operations that you did in part 1 (in the order you performed them).
3.- Check that $A=\bar{E}_{1} \bar{E}_{2} \cdots \bar{E}_{k}$ where $\bar{E}_{1}, \bar{E}_{2}, \ldots, \bar{E}_{k}$ are the elementary matrices you found in part 2.
4.- Check that $A^{-1}=E_{k} \cdots E_{2} E_{1}$ where $E_{1}, E_{2}, \ldots, E_{k}$ are the elementary matrices you found in part 1.

Solution - There are many ways to do part 1 . One combination that works is:
Step 1. Add 1 times the first row to the second.
Step 2. Add -2 times the first row from the third.
Step 3. Add -1 times the second row from the first.
Step 4. Multiply the second row by $-1 / 3$.
In this case, the four elementary matrices for part 1 are:

$$
E_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad E_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right), \quad E_{3}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad E_{4}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 / 3 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

The four elementary matrices for part 2 are:

$$
\bar{E}_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \bar{E}_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right), \quad \bar{E}_{3}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \bar{E}_{4}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

For part 3, we have

$$
\begin{aligned}
\bar{E}_{1} \bar{E}_{2} \bar{E}_{3} \bar{E}_{4} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 0 & 0 \\
2 & 2 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -3 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & -3 & 0 \\
-1 & 0 & 0 \\
2 & -6 & 1
\end{array}\right) .
\end{aligned}
$$

This is indeed the matrix A.

For part 4, we obtain

$$
\begin{aligned}
E_{4} E_{3} E_{2} E_{1} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 / 3 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & -1 / 3 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & -1 / 3 & 0 \\
-2 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 / 3 & -1 / 3 & 0 \\
-2 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

To see that this is A^{-1}, we can verify that the two matrices give the identity when multiplied together:

$$
\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 / 3 & -1 / 3 & 0 \\
-2 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & -3 & 0 \\
-1 & 0 & 0 \\
2 & -6 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & -3 & 0 \\
-1 & 0 & 0 \\
2 & -6 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 / 3 & -1 / 3 & 0 \\
-2 & 0 & 1
\end{array}\right) .
$$

