Worksheet for April 17

MATH 24 — Spring 2014

Sample Solutions

- (A) Let $\alpha = \{1, x, x^2\}$ and $\beta = \{\frac{1}{2}x^2 \frac{1}{2}x, 1 x^2, \frac{1}{2}x^2 + \frac{1}{2}x\}$ be the two ordered bases for $\mathsf{P}_2(\mathbb{R})$ from Quiz 3.
 - 1.– Compute the change of coordinate matrix Q from β to α .
 - 2.- Compute the change of coordinate matrix Q^{-1} from α to β .
 - 3.- Verify that $QQ^{-1} = I$ and $Q^{-1}Q = I$.

Solution —

1.– Looking at the coefficients of the elements of β , we see that

$$Q = \begin{pmatrix} 0 & 1 & 0 \\ -1/2 & 0 & 1/2 \\ 1/2 & -1 & 1/2 \end{pmatrix}.$$

2.- As in Quiz 3, $[1]_{\beta} = (1, 1, 1), [x]_{\beta} = (-1, 0, 1), [x^2]_{\beta} = (1, 0, 1),$ so

$$Q^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

Different bases for the same space have different properties. The basis β comes from Lagrange interpolation and it has the interesting property that

$$f(x) = f(-1)(\frac{1}{2}x^2 - \frac{1}{2}x) + f(0)(1 - x^2) + f(1)(\frac{1}{2}x^2 + \frac{1}{2}x)$$

for every $f(x) \in P_2(\mathbb{R})$. The standard basis α has other interesting properties, such as making derivatives easy to compute. The change of coordinate matrices allow you to go back and forth between α and β and simultaneously exploit the nice properties of each basis.

- (B) Let $(a, b) \in \mathbb{R}^2$ be such that $a^2 + b^2 = 1$, and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection across the line $L = \operatorname{span}\{(a, b)\}.$
 - 1.- Compute the matrix representation $[T]_{\beta}$ with respect to the ordered basis $\beta = \{(a, b), (b, -a)\}$. (Note that (b, -a) is perpendicular to the line L.)

- 2.- Show that $\begin{pmatrix} a & b \\ b & -a \end{pmatrix}^2 = I.$
- 3.- Compute the matrix representation $[T]_{\alpha}$ with respect to the standard ordered basis $\alpha = \{e_1, e_2\}$.

Solution —

1.- Since the reflection fixes the line L, T(a, b) = (a, b). Since (b, -a) is perpendicular to the line L, T(b, -a) = -(b, -a) = (-b, a). Therefore

$$[T]_{\beta} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

2.– This is a straightforward calculation:

$$\begin{pmatrix} a & b \\ b & -a \end{pmatrix} \begin{pmatrix} a & b \\ b & -a \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & ba + (-a)b \\ ab + b(-a) & b^2 + (-a)^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

3.– The matrix that changes β -coordinates to α -coordinates is

$$Q = \begin{pmatrix} a & b \\ b & -a \end{pmatrix}.$$

By part 2, $Q^{-1} = Q$ is, surprisingly, the matrix that changes α -coordinates to β -coordinates. By Theorem 2.23, we have

$$[T]_{\alpha} = Q[T]_{\beta}Q$$

$$= \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$$

$$= \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

$$= \begin{pmatrix} a^2 - b^2 & 2ab \\ 2ab & b^2 - a^2 \end{pmatrix}.$$

Computing the matrix $[T]_{\alpha}$ directly is quite a challenging geometry problem... (Try it!) By carefully choosing an basis β tailored to T, rather than the standard basis α , the problem suddenly becomes much easier! In Chapter 6, we will discuss how to arrive at this particular choice of basis.

(C) Let
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & 4 \end{pmatrix}$$
 and let $L_A : \mathbb{R}^3 \to \mathbb{R}^3$ denote left multiplication by A .

1.- Find a basis for $N(L_A)$ and a basis for $R(L_A)$. Check that the union of the two bases you just found forms a basis β for \mathbb{R}^3 .

- 2.- Compute the matrix representation $[L_A]_{\beta}$ with respect to the ordered basis β you just found.
- 3.- Show that $A^2 = 9A$ without computing A^2 .

Solution —

- 1.- There are several possible choices, for example: $\{(2, -2, 1), (2, 1, -2)\}$ is a basis for N(T); $\{(1, 2, 2)\}$ is a basis for R(T). Indeed, $\beta = \{(1, 2, 2), (2, -2, 1), (2, 1, -2)\}$ is a basis for \mathbb{R}^3 .
- 2.- Since $L_A(1,2,2) = (9,18,18) = 9(1,2,2)$ and $L_A(2,-2,1) = L_A(2,1,-2) = (0,0,0)$, we see that

$$[L_A]_{\beta} = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Regardless of your choices for part 1, you should get a matrix with one 9 along the diagonal and all other entries 0. (Pay attention to how having a basis β that contains a basis for N(T) affects the structure of $[T]^{\gamma}_{\beta}$.)

3.- It is easy to see from part 2 that $[L_A^2]_{\beta} = [L_A]_{\beta}^2 = 9[L_A]_{\beta}$. Since the linear transformation $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3) \mapsto [T]_{\beta} \mathsf{M}_{3 \times 3}(\mathbb{R})$ is an isomorphism by Theorem 2.20, it is one-to-one and we conclude that $L_A^2 = 9L_A$. By Theorem 2.15(c,e), we then see that $L_{A^2} = L_{9A}$. Since the linear transformation $M \in \mathsf{M}_{3 \times 3}(\mathbb{R}) \mapsto L_M \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$ is also an isomorphism (it is the inverse of the isomorphism above), it follows from $L_{A^2} = L_{9A}$ that $A^2 = 9A$.

This back-and-forth translation process is a very common use of isomorphisms. Our goal is a statement about the matrix A but the matrix $[L_A]_\beta$ is much easier to understand because it has much simpler structure than A. The isomorphisms between $\mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$ and $M_{3\times 3}(\mathbb{R})$ allow us to translate properties of A into properties of $[L_A]_\beta$ and then back into properties of A.