Worksheet for April 11

Math 24 - Spring 2014

Sample Solutions

(A) Consider the ordered basis $\alpha=\left\{1, x+1, x^{2}+x+1, x^{3}+x^{2}+x+1\right\}$ for $\mathrm{P}_{3}(\mathbb{R})$. Compute the vectors $\left[x^{2}\right]_{\alpha},\left[x^{3}-2 x^{2}+1\right]_{\alpha}$ and $\left[(x+1)^{3}\right]_{\alpha}$.

Solution - Since

$$
x^{2}=\left(x^{2}+x+1\right)-(x+1),
$$

we see that

$$
\left[x^{2}\right]_{\alpha}=\left(\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right) .
$$

Since

$$
x^{3}-2 x^{2}+1=\left(x^{3}+x^{2}+x+1\right)-3\left(x^{2}+x+1\right)+2(x+1)+(1),
$$

we see that

$$
\left[x^{3}-2 x^{2}+1\right]_{\alpha}=\left(\begin{array}{c}
1 \\
2 \\
-3 \\
1
\end{array}\right)
$$

Since

$$
(x+1)^{3}=x^{3}+3 x^{2}+3 x+1=\left(x^{3}+x^{2}+x+1\right)+2\left(x^{2}+x+1\right)-2(1),
$$

we see that

$$
\left[(x+1)^{3}\right]_{\alpha}=\left(\begin{array}{c}
-2 \\
0 \\
2 \\
1
\end{array}\right)
$$

(B) Let $E: \mathbf{P}_{2}(\mathbb{R}) \rightarrow \mathbf{P}_{2}(\mathbb{R})$ be the linear transformation defined by $E(f(x))=f(x+1)$. For example,

$$
E\left(x^{2}-2 x\right)=(x+1)^{2}-2(x+1)=\left(x^{2}+2 x+1\right)-(2 x+2)=x^{2}-1 .
$$

1.- Compute the matrix representation $[E]_{\gamma}$ with respect to the standard ordered basis $\gamma=$ $\left\{1, x, x^{2}\right\}$.
2.- Compute the matrix representation $[E]_{\beta}^{\gamma}$, with respect to the bases $\beta=\left\{1, x+1, x^{2}+\right.$ $x+1\}$ and $\gamma=\left\{1, x, x^{2}\right\}$.
3.- Compute the matrix representation $[E]_{\gamma}^{\beta}$, with respect to the bases $\beta=\left\{1, x+1, x^{2}+\right.$ $x+1\}$ and $\gamma=\left\{1, x, x^{2}\right\}$.

Solution -

1.- We have:

$$
\begin{array}{rlrl}
E(1) & =1 & \text { so } \quad[E(1)]_{\gamma}=(1,0,0) ; \\
E(x) & =x+1 & & \text { so } \quad[E(x)]_{\gamma}=(1,1,0) ; \\
E\left(x^{2}\right) & =x^{2}+2 x+1 & \text { so } \quad\left[E\left(x^{2}\right)\right]_{\gamma}=(1,2,1)
\end{array}
$$

Therefore

$$
[E]_{\beta}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

2.- We have:

$$
\begin{aligned}
& E(1)=1 \quad \text { so } \quad[E(1)]_{\gamma}=(1,0,0) \text {; } \\
& E(x+1)=x+2 \quad \text { so } \quad[E(x+1)]_{\gamma}=(2,1,0) ; \\
& E\left(x^{2}+x+1\right)=x^{2}+3 x+3 \text { so }\left[E\left(x^{2}+x+1\right)\right]_{\gamma}=(3,3,1) .
\end{aligned}
$$

Therefore

$$
[E]_{\beta}^{\gamma}=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)
$$

3.- We have:

$$
\begin{aligned}
E(1) & =1 & \text { so } \quad[E(1)]_{\beta}=(1,0,0) \\
E(x) & =x+1 & \text { so } \quad[E(x)]_{\beta}=(0,1,0) \\
E\left(x^{2}\right) & =\left(x^{2}+x+1\right)+(x+1)-(1) & \text { so } \quad\left[E\left(x^{2}\right)\right]_{\beta}=(-1,1,1)
\end{aligned}
$$

Therefore

$$
[E]_{\gamma}^{\beta}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

(C) Let $L: \mathrm{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $L(f(x))=(f(1), f(2), f(3))$. For example,

$$
L\left(x^{2}-1\right)=\left(\begin{array}{l}
(1)^{2}-1 \\
(2)^{2}-1 \\
(3)^{2}-1
\end{array}\right)=\left(\begin{array}{l}
0 \\
3 \\
8
\end{array}\right)
$$

1.- Compute the matrix representation of $[L]_{\gamma}^{\delta}$ where $\delta=\left\{e_{1}, e_{2}, e_{3}\right\}$ (the standard ordered basis for \mathbb{R}^{3}) and $\gamma=\left\{1, x, x^{2}\right\}$.
2.- Use Theorem 2.11 to compute the matrix representation $[L E]_{\beta}^{\delta}$ where $\delta=\left\{e_{1}, e_{2}, e_{3}\right\}$, $\beta=\left\{1, x+1, x^{2}+x+1\right\}$, and $E: \mathrm{P}_{2}(\mathbb{R}) \rightarrow \mathrm{P}_{2}(\mathbb{R})$ is as in part (B).
3.- Use Theorem 2.14 to compute $L E\left(x^{2}+2 x\right)$ and verify the result by direct computation.

Solution -

1.- Since

$$
L(1)=(1,1,1), \quad L(x)=(1,2,3), \quad L\left(x^{2}\right)=(1,4,9),
$$

we have

$$
[L]_{\gamma}^{\delta}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right)
$$

2.- By Theorem 2.11, $[L E]_{\beta}^{\delta}=[L]_{\gamma}^{\delta}[E]_{\beta}^{\gamma}$, so

$$
[L E]_{\beta}^{\delta}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 3 & 7 \\
1 & 4 & 13 \\
1 & 5 & 21
\end{array}\right)
$$

3.- By Theorem 2.14, $\left[L E\left(x^{2}+2 x\right)\right]_{\delta}=[L E]_{\beta}^{\delta}\left[x^{2}+2 x\right]_{\beta}$. Since δ is the standard basis of \mathbb{R}^{3}, we also have $L E\left(x^{2}+2 x\right)=\left[L E\left(x^{2}+2 x\right)\right]_{\delta}$. Because $x^{2}-2 x=\left(x^{2}+x+1\right)-$ $3(x+1)+2(1)$, we see that

$$
L E\left(x^{2}-2 x\right)=\left(\begin{array}{ccc}
1 & 3 & 7 \\
1 & 4 & 13 \\
1 & 5 & 21
\end{array}\right)\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
3 \\
8
\end{array}\right) .
$$

Since $L E(f(x))=(f(2), f(3), f(4))$, we can check

$$
L E\left(x^{2}-2 x\right)=\left(\begin{array}{l}
(2)^{2}-2(2) \\
(3)^{2}-2(3) \\
(4)^{2}-2(4)
\end{array}\right)=\left(\begin{array}{l}
0 \\
3 \\
8
\end{array}\right) .
$$

