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Sample Solutions

(A) For each of the following linear transformations Tk: (i) find a basis for the null space N(Tk),
(ii) extend that basis to the whole domain space, (iii) find a basis for the range R(Tk),.

1.– T1 : R2 → R2 where T1(a1, a2) = (a1 + a2, a1 − a2).

2.– T2 : F
3 → F 2 where T2(a1, a2, a3) = (a1 − a2, a2 − a3).

3.– T3 : M2×2(R)→ M2×2(R) where T3(A) = A− At.

4.– T4 : M2×2(R)→ M2×2(R) where T4(A) = A+ At.

5.– T5 : Mn×n(F )→ F where T5(A) = tr(A).

Solution —

1.– We have (a1, a2) ∈ N(T1) exactly when a1 + a2 = 0 and a1 − a2 = 0. This system of
equation has only one solution (a1, a2) = (0, 0) and therefore N(T1) = {(0, 0)} and a
basis for this space is simply ∅.

We can extend this to the standard basis {(1, 0), (0, 1)} for R2. In fact, any basis for R2

will do in this case.
Then, {T1(1, 0), T1(0, 1)} = {(1, 1), (1,−1)} is a basis for R(T1). Again, any basis for
R2 will do since R(T1) = R2 for this particular transformation.

2.– We have (a1, a2, a3) ∈ N(T2) exactly when a1 − a2 = 0 and a2 − a3 = 0. These two
equations combine to a1 = a2 = a3, so N(T2) = span{(1, 1, 1)} and a basis for the null
space of T2 is {(1, 1, 1)}.
We can extend this to a basis for F 3 by thinning down the generating set

{(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)}

to a basis containing (1, 1, 1). Proceeding in order, we obtain the basis

{(1, 1, 1), (1, 0, 0), (0, 1, 0)}.

Different choices of bases are also possible, any basis for F 3 that contains (1, 1, 1) will
work.
In the previous step, we added two new vectors (1, 0, 0) and (0, 1, 0) to extend our basis.
Therefore, {T2(1, 0, 0), T2(0, 1, 0)} = {(1, 0), (1,−1)} is a basis for R(T2). Alternatively,
we could have first noticed that R(T2) = F 2 and any basis for F 2 would work for this last
step.



3.– Since A−At = 0 precisely when A = At, N(T3) is the space of symmetric 2×2 matrices,
which by Example 19 on pages 50–51 has basis {A11, A12, A22}, where

A11 =

(
1 0
0 0

)
, A12 =

(
0 1
1 0

)
, A22 =

(
0 0
0 1

)
.

This basis can be extended to the basis {A11, A12, A22, E21} for M2×2(R). where

E21 =

(
0 0
1 0

)
.

Finally,

{T3(E
21)} =

{(
0 −1
1 0

)}
is a basis for R(T3).

4.– Since A+At = 0 precisely when At = −A, N(T4) is the space of skew-symmetric 2× 2
matrices. After Quiz 1, we know that this space has basis {B} where

B =

(
0 −1
1 0

)
.

This basis can be extended to the basis {B,A11, A12, A22} for M2×2(R). Any basis for
M2×2(R) that contains B will do. This choice turnsout to be convenient because T4(A) =
2A for every 2× 2 symmetric matrix A. Since A11, A12, A22 are all symmetric, it follows
that {A11, A12, A22} is a basis for R(T4).

5.– N(T5) is the space of all n× n matrices with trace zero. A basis for this space consists of
the n2 − 1 matrices

{E11 − Eii : 2 ≤ i ≤ n} ∪ {Eij : 1 ≤ i, j ≤ n, i 6= j}.

This basis can be extended to the basis

{E11} ∪ {E11 − Eii : 2 ≤ i ≤ n} ∪ {Eij : 1 ≤ i, j ≤ n, i 6= j}

for Mn×n(F ). In fact, any n× n matrix with nonzero trace would do instead of E11 since
we know that a basis must have size n2.

Finally, {T5(E
11)} = {1} is a basis for R(T5). Since the codomain F is a 1-dimensional

space, there was little choice here.

(B) For which real numbers b1, b2, b3, b4, b5, b6 is there a linear transformation T : R4 → R such
that

T (1,−1, 0, 0) = b1, T (0, 1,−1, 0) = b2,

T (1, 0,−1, 0) = b3, T (0, 1, 0,−1) = b4,

T (1, 0, 0,−1) = b5, T (0, 0, 1,−1) = b6?



Solution — The six input vectors are not linearly independent. In particular,

(1, 0, 0,−1) = (0, 1, 0,−1) + (1,−1, 0, 0),
(0, 0, 1,−1) = (1, 0, 0,−1)− (1, 0,−1, 0).

So we must have

b5 = T (1, 0, 0,−1) = T (0, 1, 0,−1) + T (1,−1, 0, 0) = b4 + b1,

b6 = T (0, 0, 1,−1) = T (1, 0, 0,−1)− T (1, 0,−1, 0) = b5 − b3.

There are no other restrictions on b1, b2, b3, b4, b5, b6.

Indeed, the four vectors

(1,−1, 0, 0), (0, 1,−1, 0), (1, 0,−1, 0), (0, 1, 0,−1)

form a basis for R4. According to Theorem 2.6, for any choice of b1, b2, b3, b4 there is a unique
linear transformation T : R4 → R such that

T (1,−1, 0, 0) = b1, T (0, 1,−1, 0) = b2,

T (1, 0,−1, 0) = b3, T (0, 1, 0,−1) = b4.

So long as b5 = b4 + b1 and b6 = b5 − b3, this linear transformation will necessarily satisfy

T (1, 0, 0,−1) = b5, T (0, 0, 1,−1) = b6.

(C) Let V and W be vector spaces over F. Given a function T : V → W, show that the following
are equivalent:

1.– T is a linear transformation.

2.– T (ax+ by) = aT (x) + bT (y) for all scalars a, b and all vectors x, y ∈ V.

3.– T (ax+ y) = aT (x) + T (y) for every scalar a and all vectors x, y ∈ V.

Solution — We prove that 1 implies 2, 2 implies 3, and 3 implies 1. Because implication is
transitive, this is enough to show that the three requirements are equivalent.

(1 ⇒ 2) Suppose a, b are scalars and x, y are vectors in V. Assuming T : V → W is a linear
transformation, we have

T (ax+ by) = T (ax) + T (by) = aT (x) + bT (y)

by successively applying properties (a) and (b) of the definition on page 65.

(2⇒ 3) Suppose T : V→ W satisfies condition 3. Choosing b = 1 in condition 3, we obtain
that

T (ax+ y) = T (ax+ 1y) = aT (x) + 1T (y) = aT (x) + T (y)

for all vectors x, y ∈ V and every scalar a.



(3⇒ 1) Suppose T : V→ W satisfies condition 3. Choosing a = 1 in condition 3, we obtain
that

T (x+ y) = T (1x+ y) = 1T (x) + T (y) = T (x) + T (y)

for all vectors x, y ∈ V.

It follows from this that T (0) = 0. Indeed,

T (0) = T (0 + 0) = T (0) + T (0)

and then adding −T (0) to both sides, we obtain 0 = T (0).

Choosing y = 0 in condition 3, we obtain that

T (ax) = T (ax+ 0) = aT (x) + T (0) = aT (x) + 0 = aT (x)

for every scalar a and every vector x in V.

Since T (x+ y) = T (x) + T (y) and T (ax) = aT (x), we conclude that T is a linear transfor-
mation.


