Worksheet for April 7

MATH 24 - SPRING 2014

Sample Solutions

(A) For each of the following linear transformations T_{k} : (i) find a basis for the null space $\mathrm{N}\left(T_{k}\right)$, (ii) extend that basis to the whole domain space, (iii) find a basis for the range $\mathrm{R}\left(T_{k}\right)$,.
1.- $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ where $T_{1}\left(a_{1}, a_{2}\right)=\left(a_{1}+a_{2}, a_{1}-a_{2}\right)$.
2.- $T_{2}: F^{3} \rightarrow F^{2}$ where $T_{2}\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-a_{2}, a_{2}-a_{3}\right)$.
3.- $T_{3}: \mathrm{M}_{2 \times 2}(\mathbb{R}) \rightarrow \mathrm{M}_{2 \times 2}(\mathbb{R})$ where $T_{3}(A)=A-A^{t}$.
4.- $T_{4}: \mathrm{M}_{2 \times 2}(\mathbb{R}) \rightarrow \mathrm{M}_{2 \times 2}(\mathbb{R})$ where $T_{4}(A)=A+A^{t}$.
5.- $T_{5}: \mathrm{M}_{n \times n}(F) \rightarrow F$ where $T_{5}(A)=\operatorname{tr}(A)$.

Solution -

1.- We have $\left(a_{1}, a_{2}\right) \in \mathrm{N}\left(T_{1}\right)$ exactly when $a_{1}+a_{2}=0$ and $a_{1}-a_{2}=0$. This system of equation has only one solution $\left(a_{1}, a_{2}\right)=(0,0)$ and therefore $\mathrm{N}\left(T_{1}\right)=\{(0,0)\}$ and a basis for this space is simply \varnothing.
We can extend this to the standard basis $\{(1,0),(0,1)\}$ for \mathbb{R}^{2}. In fact, any basis for \mathbb{R}^{2} will do in this case.
Then, $\left\{T_{1}(1,0), T_{1}(0,1)\right\}=\{(1,1),(1,-1)\}$ is a basis for $\mathrm{R}\left(T_{1}\right)$. Again, any basis for \mathbb{R}^{2} will do since $\mathrm{R}\left(T_{1}\right)=\mathbb{R}^{2}$ for this particular transformation.
2.- We have $\left(a_{1}, a_{2}, a_{3}\right) \in \mathrm{N}\left(T_{2}\right)$ exactly when $a_{1}-a_{2}=0$ and $a_{2}-a_{3}=0$. These two equations combine to $a_{1}=a_{2}=a_{3}$, so $\mathrm{N}\left(T_{2}\right)=\operatorname{span}\{(1,1,1)\}$ and a basis for the null space of T_{2} is $\{(1,1,1)\}$.
We can extend this to a basis for F^{3} by thinning down the generating set

$$
\{(1,1,1),(1,0,0),(0,1,0),(0,0,1)\}
$$

to a basis containing $(1,1,1)$. Proceeding in order, we obtain the basis

$$
\{(1,1,1),(1,0,0),(0,1,0)\} .
$$

Different choices of bases are also possible, any basis for F^{3} that contains $(1,1,1)$ will work.
In the previous step, we added two new vectors $(1,0,0)$ and $(0,1,0)$ to extend our basis. Therefore, $\left\{T_{2}(1,0,0), T_{2}(0,1,0)\right\}=\{(1,0),(1,-1)\}$ is a basis for $\mathrm{R}\left(T_{2}\right)$. Alternatively, we could have first noticed that $\mathrm{R}\left(T_{2}\right)=F^{2}$ and any basis for F^{2} would work for this last step.
3.- Since $A-A^{t}=0$ precisely when $A=A^{t}, \mathrm{~N}\left(T_{3}\right)$ is the space of symmetric 2×2 matrices, which by Example 19 on pages 50-51 has basis $\left\{A^{11}, A^{12}, A^{22}\right\}$, where

$$
A^{11}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), A^{12}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), A^{22}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

This basis can be extended to the basis $\left\{A^{11}, A^{12}, A^{22}, E^{21}\right\}$ for $\mathrm{M}_{2 \times 2}(\mathbb{R})$. where

$$
E^{21}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Finally,

$$
\left\{T_{3}\left(E^{21}\right)\right\}=\left\{\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right\}
$$

is a basis for $\mathrm{R}\left(T_{3}\right)$.
4.- Since $A+A^{t}=0$ precisely when $A^{t}=-A, \mathrm{~N}\left(T_{4}\right)$ is the space of skew-symmetric 2×2 matrices. After Quiz 1, we know that this space has basis $\{B\}$ where

$$
B=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

This basis can be extended to the basis $\left\{B, A^{11}, A^{12}, A^{22}\right\}$ for $\mathrm{M}_{2 \times 2}(\mathbb{R})$. Any basis for $\mathrm{M}_{2 \times 2}(\mathbb{R})$ that contains B will do. This choice turnsout to be convenient because $T_{4}(A)=$ $2 A$ for every 2×2 symmetric matrix A. Since A^{11}, A^{12}, A^{22} are all symmetric, it follows that $\left\{A^{11}, A^{12}, A^{22}\right\}$ is a basis for $\mathrm{R}\left(T_{4}\right)$.
5.- $\mathrm{N}\left(T_{5}\right)$ is the space of all $n \times n$ matrices with trace zero. A basis for this space consists of the $n^{2}-1$ matrices

$$
\left\{E^{11}-E^{i i}: 2 \leq i \leq n\right\} \cup\left\{E^{i j}: 1 \leq i, j \leq n, i \neq j\right\}
$$

This basis can be extended to the basis

$$
\left\{E^{11}\right\} \cup\left\{E^{11}-E^{i i}: 2 \leq i \leq n\right\} \cup\left\{E^{i j}: 1 \leq i, j \leq n, i \neq j\right\}
$$

for $\mathrm{M}_{n \times n}(F)$. In fact, any $n \times n$ matrix with nonzero trace would do instead of E^{11} since we know that a basis must have size n^{2}.
Finally, $\left\{T_{5}\left(E^{11}\right)\right\}=\{1\}$ is a basis for $\mathrm{R}\left(T_{5}\right)$. Since the codomain F is a 1-dimensional space, there was little choice here.
(B) For which real numbers $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}$ is there a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}$ such that

$$
\begin{array}{ll}
T(1,-1,0,0)=b_{1}, & T(0,1,-1,0)=b_{2} \\
T(1,0,-1,0)=b_{3}, & T(0,1,0,-1)=b_{4} \\
T(1,0,0,-1)=b_{5}, & T(0,0,1,-1)=b_{6} ?
\end{array}
$$

Solution - The six input vectors are not linearly independent. In particular,

$$
\begin{aligned}
& (1,0,0,-1)=(0,1,0,-1)+(1,-1,0,0) \\
& (0,0,1,-1)=(1,0,0,-1)-(1,0,-1,0) .
\end{aligned}
$$

So we must have

$$
\begin{aligned}
& b_{5}=T(1,0,0,-1)=T(0,1,0,-1)+T(1,-1,0,0)=b_{4}+b_{1} \\
& b_{6}=T(0,0,1,-1)=T(1,0,0,-1)-T(1,0,-1,0)=b_{5}-b_{3}
\end{aligned}
$$

There are no other restrictions on $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}$.
Indeed, the four vectors

$$
(1,-1,0,0),(0,1,-1,0),(1,0,-1,0),(0,1,0,-1)
$$

form a basis for \mathbb{R}^{4}. According to Theorem 2.6, for any choice of $b_{1}, b_{2}, b_{3}, b_{4}$ there is a unique linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}$ such that

$$
\begin{array}{ll}
T(1,-1,0,0)=b_{1}, & T(0,1,-1,0)=b_{2} \\
T(1,0,-1,0)=b_{3}, & T(0,1,0,-1)=b_{4} .
\end{array}
$$

So long as $b_{5}=b_{4}+b_{1}$ and $b_{6}=b_{5}-b_{3}$, this linear transformation will necessarily satisfy

$$
T(1,0,0,-1)=b_{5}, \quad T(0,0,1,-1)=b_{6} .
$$

(C) Let V and W be vector spaces over F. Given a function $T: \mathrm{V} \rightarrow \mathrm{W}$, show that the following are equivalent:
1.- T is a linear transformation.
2.- $T(a x+b y)=a T(x)+b T(y)$ for all scalars a, b and all vectors $x, y \in \mathrm{~V}$.
3.- $T(a x+y)=a T(x)+T(y)$ for every scalar a and all vectors $x, y \in \mathrm{~V}$.

Solution - We prove that 1 implies 2, 2 implies 3, and 3 implies 1 . Because implication is transitive, this is enough to show that the three requirements are equivalent.
$(1 \Rightarrow 2)$ Suppose a, b are scalars and x, y are vectors in V . Assuming $T: \mathrm{V} \rightarrow \mathrm{W}$ is a linear transformation, we have

$$
T(a x+b y)=T(a x)+T(b y)=a T(x)+b T(y)
$$

by successively applying properties (a) and (b) of the definition on page 65.
$(2 \Rightarrow 3)$ Suppose $T: \vee \rightarrow \mathrm{W}$ satisfies condition 3. Choosing $b=1$ in condition 3, we obtain that

$$
T(a x+y)=T(a x+1 y)=a T(x)+1 T(y)=a T(x)+T(y)
$$

for all vectors $x, y \in \mathrm{~V}$ and every scalar a.
$(3 \Rightarrow 1)$ Suppose $T: \bigvee \rightarrow \mathrm{W}$ satisfies condition 3. Choosing $a=1$ in condition 3, we obtain that

$$
T(x+y)=T(1 x+y)=1 T(x)+T(y)=T(x)+T(y)
$$

for all vectors $x, y \in \mathrm{~V}$.
It follows from this that $T(0)=0$. Indeed,

$$
T(0)=T(0+0)=T(0)+T(0)
$$

and then adding $-T(0)$ to both sides, we obtain $0=T(0)$.
Choosing $y=0$ in condition 3 , we obtain that

$$
T(a x)=T(a x+0)=a T(x)+T(0)=a T(x)+0=a T(x)
$$

for every scalar a and every vector x in V .
Since $T(x+y)=T(x)+T(y)$ and $T(a x)=a T(x)$, we conclude that T is a linear transformation.

