Worksheet for April 7

MATH 24 — SPRING 2014

Sample Solutions

(A) For each of the following linear transformations 7: (i) find a basis for the null space N(7}),
(ii) extend that basis to the whole domain space, (iii) find a basis for the range R(7}),.

1.— T} : R? — R? where T} (ay, as) = (a1 + az, a; — ay).

2—1T5: F3 — F? where Tg(al,(lg,ag) = ((11 — Q9,09 — CL3).

3.— T3 : MQXQ(R) — M2X2<R) where Tg(A) =A—- A

4- Ty : MQXQ(R) — MQXQ(R) where T4(A) =A+ At

5— Ts: Myyn(F) — F where T5(A) = tr(A).

Solution —

1.— We have (a1, az) € N(T1) exactly when a; + as = 0 and a; — az = 0. This system of
equation has only one solution (a1, a2) = (0,0) and therefore N(7}) = {(0,0)} and a
basis for this space is simply &.
We can extend this to the standard basis {(1,0), (0,1)} for R?. In fact, any basis for R?
will do in this case.
Then, {71(1,0),77(0,1)} = {(1,1),(1,—1)} is a basis for R(7}). Again, any basis for
R? will do since R(7}) = R? for this particular transformation.

2.— We have (aj,as,a3) € N(T) exactly when a; — as = 0 and ay — a3 = 0. These two

equations combine to a; = ay = as, so N(T3) = span{(1,1,1)} and a basis for the null
space of Ty is {(1,1,1)}.
We can extend this to a basis for ® by thinning down the generating set

{(1,1,1),(1,0,0),(0,1,0),(0,0,1)}
to a basis containing (1, 1, 1). Proceeding in order, we obtain the basis

{(1,1,1),(1,0,0), (0,1,0)}.

Different choices of bases are also possible, any basis for £ that contains (1,1, 1) will
work.

In the previous step, we added two new vectors (1,0, 0) and (0, 1,0) to extend our basis.
Therefore, {15(1,0,0),75(0,1,0)} = {(1,0), (1, —1)} is a basis for R(7%). Alternatively,
we could have first noticed that R(7,) = F? and any basis for £'2 would work for this last
step.
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Since A— A! = 0 precisely when A = A’ N(T3) is the space of symmetric 2 X 2 matrices,
which by Example 19 on pages 50-51 has basis { A1, A2 A??} where

u {10\ o (0 1\ e (00
A_(OO’A_lo’A_Ol'

This basis can be extended to the basis { A, A2 A?2) 1} for Myyo(R). where
21 (0 0
o (00)

e ={(1 )}
is a basis for R(T%).

Since A+ A" = 0 precisely when A* = — A, N(T}) is the space of skew-symmetric 2 x 2
matrices. After Quiz 1, we know that this space has basis { B} where

0 —1
s (0 )
This basis can be extended to the basis {B, A, A2 A?2} for My, (R). Any basis for
Ma2(R) that contains B will do. This choice turnsout to be convenient because 7 (A) =

2A for every 2 x 2 symmetric matrix A. Since A, A2, A?2 are all symmetric, it follows
that { A1!, A2 A?2} is a basis for R(T}).

N(T5) is the space of all n X n matrices with trace zero. A basis for this space consists of
the n? — 1 matrices

Finally,

(B —FE":2<i<n}U{E7:1<i,j<ni#j}
This basis can be extended to the basis
{E"MYU{E" —F":2<i<n}U{EY:1<i,j<n,i#j}

for M,,«,,(F). In fact, any n x n matrix with nonzero trace would do instead of £ 1 since
we know that a basis must have size n?.

Finally, {T5(E")} = {1} is a basis for R(T}). Since the codomain F is a 1-dimensional
space, there was little choice here.

(B) For which real numbers by, by, bs, by, bs, bg is there a linear transformation 7' : R* — R such

that

T(1,-1,0,0) = by, T(0,1,—1,0) = by,
T(1,0,—1,0) = b3, T(0,1,0,—1) = by,
T(1,0,0,—1) = bs, T(0,0,1,—1) = bg?
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Solution — The six input vectors are not linearly independent. In particular,

(1,0,0,—1) = (0,1,0,—1) + (1, —1,0,0),
(0,0,1,—1) = (1,0,0,—1) — (1,0, —1,0).

So we must have
bs =T7(1,0,0,—1) =T7(0,1,0,—1) +7'(1,—1,0,0) = by + by,
bg =71(0,0,1,—1) =T7(1,0,0,—1) —T7(1,0,—1,0) = b5 — bs.
There are no other restrictions on by, by, b3, by, b5, bg.

Indeed, the four vectors
(1,-1,0,0),(0,1,-1,0),(1,0,—1,0),(0,1,0,—1)

form a basis for R*. According to Theorem 2.6, for any choice of by, by, bs, by there is a unique
linear transformation 7" : R* — R such that

T(la _1a07 0) = b17 T(07 17 _170) = b2’
T(1,0,—1,0) =bs, T(0,1,0,—1) = by.

So long as b; = by + by and bg = bs — b3, this linear transformation will necessarily satisfy

T(lg 0707 _1) = b57 T(0707 17 _1) = b6'

Let V and W be vector spaces over F. Given a function 7" : V — W, show that the following
are equivalent:

1.— T'is a linear transformation.

2.— T(ax + by) = aT'(x) + bT'(y) for all scalars a, b and all vectors z,y € V.

3.— T(ax +y) = aT(x) + T(y) for every scalar a and all vectors z,y € V.

Solution — We prove that 1 implies 2, 2 implies 3, and 3 implies 1. Because implication is
transitive, this is enough to show that the three requirements are equivalent.

(1 = 2) Suppose a, b are scalars and x, y are vectors in V. Assuming 7" : V — W is a linear
transformation, we have

T(ax +by) = T(ax) + T(by) = aT(x) + T (y)

by successively applying properties (a) and (b) of the definition on page 65.

(2 = 3) Suppose 7' : V — W satisfies condition 3. Choosing b = 1 in condition 3, we obtain
that
T(ax +vy) =T(ax + ly) = aT(x) + 1T (y) = aT () + T(y)

for all vectors x,y € V and every scalar a.



(3= 1) Suppose 17" : V — W satisfies condition 3. Choosing a = 1 in condition 3, we obtain
that
Tx+y) =T(x+y)=1T(z) + T(y) = T(z) + T(y)

for all vectors z,y € V.
It follows from this that 7'(0) = 0. Indeed,

T(0)=T(0+40)=T(0)+T(0)
and then adding —7'(0) to both sides, we obtain 0 = 7°(0).
Choosing y = 0 in condition 3, we obtain that

T(ax) =T(ax 4+ 0) = aT(z) +T(0) = aT'(z) + 0 = aT'(x)

for every scalar a and every vector x in V.

Since T'(x + y) = T'(z) + T(y) and T'(ax) = aT'(x), we conclude that T is a linear transfor-
mation.



