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Sample Solutions

(1) Show that the matrices (
1 1
0 0

)
,

(
1 1
0 1

)
,

(
0 1
1 1

)
are linearly independent in M2×2(Z2).

Solution — Because the field Z2 only has two elements, namely 0 and 1, there are only eight
linear possible combinations

a

(
1 1
0 0

)
+ b

(
1 1
0 1

)
+ c

(
0 1
1 1

)
.

When exactly one of a, b, c is 1, we simply obtain the three original matrices:(
1 1
0 0

)
,

(
1 1
0 1

)
,

(
0 1
1 1

)
.

When exactly two of a, b, c are 1, we obtain the three matrices:(
0 0
0 1

)
=

(
1 1
0 0

)
+

(
1 1
0 1

)
,(

1 0
1 1

)
=

(
1 1
0 0

)
+

(
0 1
1 1

)
,(

1 0
1 0

)
=

(
1 1
0 1

)
+

(
0 1
1 1

)
.

Finally, when a = b = c = 1, we obtain the matrix(
0 1
1 0

)
=

(
1 1
0 0

)
+

(
1 1
0 1

)
+

(
0 1
1 1

)
.

Since none of these are the zero matrix, no nontrivial linear combination of the three given
matrices equals zero. Therefore, the three matrices are linearly dependent.

For a more systematic approach that also works with larger fields, we can look at the system
of coordinate equations that arise from

a

(
1 1
0 0

)
+ b

(
1 1
0 1

)
+ c

(
0 1
1 1

)
=

(
0 0
0 0

)
,



namely
a + b = 0
a + b + c = 0

c = 0
b + c = 0

The third equation forces c = 0. Then the last equation forces b = 0 too. Finally, the remain-
ing two equation force a = 0. Therefore, the only way to obtain the zero matrix as a linear
combination of the three given matrices is the trivial combination a = b = c = 0.

(2) Determine whether the set
i 0

0 i
0 0

 ,

0 0
i 0
0 i

 ,

0 i
0 0
i 0

 ,

1 0
1 0
1 0

 ,

0 1
0 1
0 1


is linearly independent in M3×2(C).

Solution — Since i2 = −1, we see that

i

i 0
0 i
0 0

+ i

0 0
i 0
0 i

+ i

0 i
0 0
i 0

+

1 0
1 0
1 0

+

0 1
0 1
0 1

 =

0 0
0 0
0 0


is a linear dependency among these matrices.

Rather than simply guessing a linear dependency, let’s proceed in a more systematic way. From

x1

i 0
0 i
0 0

+ x2

0 0
i 0
0 i

+ x3

0 i
0 0
i 0

+ x4

1 0
1 0
1 0

+ x5

0 1
0 1
0 1

 =

0 0
0 0
0 0


We obtain the following system of coordinate equations:

ix1 + x4 = 0
ix2 + x4 = 0

ix3 + x4 = 0
ix1 + x5 = 0

ix2 + x5 = 0
ix3 + x5 = 0

While intimidatingly large, this system is almost already in echelon form. Subtracting the first
equation from the fourth, the second from the fifth, and the third from the sixth, we obtain:

ix1 + x4 = 0
ix2 + x4 = 0

ix3 + x4 = 0
− x4 + x5 = 0



where the last two equations were omitted since they were identical to the fourth.

At this point, we see that x5 is a slack variable, so we could pick any value for x5 and we
will be able to solve the system. It follows that the system has infinitely many solutions and
therefore the system does have solutions other than x1 = x2 = x3 = x4 = x5 = 0. In fact,
solving the system for x5 = t, we obtain x1 = x2 = x3 = it and x4 = x5 = t as the general
solution; the one we found above corresponds to choosing t = 1.

(3) For 1 ≤ i, j ≤ 17 let Ei,j denote the 17× 17 matrix whose (i, j)-th entry is 1 and all of whose
other entries are zero. Show that

S = {Ei,j : 1 ≤ i, j ≤ 17}

is linearly independent in M17×17(F ).

Solution — Since S contains 289 matrices, it’s not practical to write down the coordinate
equations in long form. Fortunately, it makes sense to use Σ-notation in linear algebra just like
in calculus (except that infinite series don’t make much sense). The typical linear combination
of the matrices in S can be written:

17∑
i=1

17∑
j=1

aijE
ij.

By definition of Eij, the (i, j)-th entry of the result of this sum is simply aij. Indeed, the (i, j)-
th entry of aijEij is aij and all other summands have (i, j)-th entry 0. It follows that the only
way to obtain the zero matrix as a result is to have aij = 0 for all 1 ≤ i, j ≤ 17. Therefore, the
set S is indeed linearly independent.

(4) Is the set {(1, 1, 0), (1, 0, 1), (0, 1, 1)} linearly independent in F 3?

Solution — This is a trick question since the answer depends on what the field F is. If F has
characteristic 2, i.e., 1 + 1 = 0 as in Z2, then

(1, 1, 0) + (1, 0, 1) + (0, 1, 1) = (0, 0, 0)

is a nontrivial linear dependency of the vectors in the set. However, if 1 + 1 6= 0, then the
vectors in the set are linearly independent!

To see this formally, let’s set up the coordinate equations for

x1(1, 1, 0) + x2(1, 0, 1) + x3(0, 1, 1) = (0, 0, 0).

The resulting system is:
x1 + x2 = 0
x1 + x3 = 0

x2 + x3 = 0



Subtracting the first equation from the second, we obtain:

x1 + x2 = 0
− x2 + x3 = 0

x2 + x3 = 0

Adding the second equation to the third, we obtain:

x1 + x2 = 0
− x2 + x3 = 0

2x3 = 0

In this last equation, 2 denotes 1 + 1.

If the field F has characteristic 2, then 2 = 0 and the last equation reduces to 0 = 0. In that
case x3 is a slack variable and we can pick any value for x3 and we will still be able to solve
the equations. Therefore, the system has at least one solution other than x1 = x2 = x3 = 0,
which means that the set is linearly dependent in F 3.

If the field F does not have characteristic 2, then 2 6= 0 and we can multiply the last equation
by the multiplicative inverse of 2 to obtain:

x1 + x2 = 0
− x2 + x3 = 0

x3 = 0

These equations tell us that x1 = −x2, x2 = x3, and x3 = 0. Therefore, x1 = x2 = x3 = 0 is
the only solution to this system, which means that the set is linearly independent in F 3.

(5) Prove that if S is a set of nonzero polynomials in P(F ) such that no two have the same degree
then S is linearly independent in P(F ).

Solution — I will formulate this solution in theorem-proof style.

Theorem. Any set S of nonzero polynomials in P(F ) that contains at most one polynomial
of each degree is linearly independent.

Proof. Supppose, for the sake of contradiction, that there is a nontrivial linear dependency
among elements of S. Specifically, suppose f1(x), f2(x), . . . , fn(x) are distinct elements of S
and that a1, a2, . . . , an are nonzero scalars such that

a1f1(x) + a2f2(x) + · · ·+ anfn(x) = 0.

Note that we must have n ≥ 2 since none of the polynomials in S are zero.

Since S contains at most one polynomials of each degree, the degrees of the polynomials
f1(x), f2(x), . . . , fn(x) must all be different. Renumbering the polynomials if necessary, we
may assume that

deg(f1(x)) > deg(f2(x)) > · · · > deg(fn(x)).



Since a1 6= 0, we may solve the above equation for f1(x) to obtain

fn(x) = −a2
a1

f2(x)− · · · − an
a1

fn(x).

The right hand side is a linear combination of polynomials of degree at most deg(f2(x)), which
means that f1(x) has degree at most deg(f2(x)) since linear combinations of polynomials
never increase the degree. But this is impossible since we know that deg(f1(x)) > deg(f2(x))!

From this contradiction, we conclude that our hypothesis that there is a nontrivial linear de-
pendency among elements of S must be false and therefore that S is linearly independent.

There are a few interesting aspects to this proof:

• Since “S is linearly independent” is a negative statement, a proof by contradiction was
the most likely approach for this. Pay attention to disguised negatives: ‘independent’,
‘nonzero’, ‘infinite’, ‘irrational’, etc. When you see them, think about using tricks such
as the contrapositive or proof by contradiction.
For another example, compare Theorem 1.6 with its Corollary in Section 1.5. The two
are contrapositives of each other but Theorem 1.6, which involves ‘linear dependence’,
has an easy direct proof while the Corollary, which involves ‘linear independence’ does
not have an easy direct proof.

• Note how the hypothesis that elements of S are nonzero is actually important. We used it
to show that n ≥ 2 for the proposed linear dependency. Without this fact, all the mentions
of f2(x) in the second paragraph could be meaningless!
It’s always tempting to think that expressions like a1f1(x) + · · · + anfn(x) necessarily
involve multiple terms. However, the notation is meant to include n = 1 as a possibility,
so make sure your argument works in that case too!

• The sentence “renumbering the polynomials if necessary, we may assume that [. . . ]”
is interesting. Since it makes no difference how the terms of a linear dependency are
ordered, we can choose to order them in a way that is convenient for us. What is unusual
is that we are making this choice after the fact. This is fine in this case since we could
have made this choice before the fact but the proof would have been harder to follow.
A common trap is to accidentally introduce new hypotheses in this process. If you do this,
do make sure that you could have made the choices you want at the outset and without
changing the hypotheses of the result you want to prove.


