
Worksheet for March 31

MATH 24 — SPRING 2014

Sample Solutions

(A) How many solutions does each of the systems of equations

x1 − x2 + 5x3 = −1
x2 − 3x3 = 2

2x1 + x2 + x3 = 1
and

x1 − x2 + 5x3 = 3
x2 − 3x3 = −2

2x1 + x2 + x3 = 0

have over the field R?

Solution — Interestingly, because the left-hand side of the two systems are identical, we can
solve them simultaneously using the same operations. Subtract 2 times the first equation from
the third to obtain:

x1 − x2 + 5x3 = −1
x2 − 4x3 = 2
3x2 − 9x3 = 3

and
x1 − x2 + 5x3 = 3

x2 − 4x3 = −2
3x2 − 9x3 = −6

.

Then subtract 3 times the second equation from the third to obtain:

x1 − x2 + 5x3 = −1
x2 − 4x3 = 2

0 = −3
and

x1 − x2 + 5x3 = 3
x2 − 4x3 = −2

0 = 0

We immediately see that the first system is has no solutions since 0 6= −3.
We also see that the second system at least has the solution x1 = 1, x2 = −2, and x3 = 0. In
fact, it has infinitely many solutions. We can choose any value for x3, say x3 = t. Then, the
second equation forces x2 = −2 + 4x2 = −2 + 4t. Finally, the first requation forces

x1 = 3 + x2 − 5x3 = 3 + (−2 + 4t)− 5t = 1− t.

This process gives a different solution for each choice of real number t. Since there are in-
finitely many real numbers, there are infinitely many solutions to this system.

(B) Determine whether the vectors (−1, 2, 1) and (3,−2, 0) are in the span of the set

S = {(1, 0, 2), (−1, 1, 1), (5,−3, 1)}

in R3.



Solution — For the first vector, we are asked whether there are scalars a1, a2, a3 such that

a1(1, 0, 2) + a2(−1, 1, 1) + a3(5,−3, 1) = (−1, 2, 1).

The three coordinate equations lead to the first system from the previous problem, except
that the unknowns are now called a1, a2, a3 instead of x1, x2, x3. Since this system has no
solutions, we conclude that there are no such scalars a1, a2, a3 and therefore that (−1, 2, 1) is
not in the span of the set S.

Similarly, for the second vector, we are asked whether there are scalars a1, a2, a3 such that

a1(1, 0, 2) + a2(−1, 1, 1) + a3(5,−3, 1) = (3,−2, 0).

The three coordinate equations lead to the first system from the previous problem, except that
the unknowns are now called a1, a2, a3 instead of x1, x2, x3. This system is consistent and it
has the solution a1 = 1, a2 = −2, a3 = 0. So (3,−2, 0) is in the span of S and, in fact,

(1, 0, 2)− 2(−1, 1, 1) = (3,−2, 0)

is one way to write this vector as a linear combination of elements of S.

(C) Show that the matrices(
1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
0 0

)
, and

(
0 0
1 0

)
generate M2×2(R).

Solution — We are asked to show that every 2× 2 matrix

A =

(
a11 a12
a21 a22

)
can be written as a linear combination of the four matrices listed above. Well,

A =
a11 + a22

2

(
1 0
0 1

)
+

a11 − a22
2

(
1 0
0 −1

)
+ a12

(
0 1
0 0

)
+ a21

(
0 0
1 0

)
is one way to do just that!

While it’s not difficult to guess the representation above, a more systematic approach is to set
up a system of linear equations as follows. We are looking for scalars c1, c2, c3, c4 such that

A = c1

(
1 0
0 1

)
+ c2

(
1 0
0 −1

)
+ c3

(
0 1
0 0

)
+ c4

(
0 0
1 0

)
.

The four coordinate equations resulting from this are:

a11 = c1 + c2, a12 = c3,

a21 = c4, a22 = c1 − c2.



If we solve for c1, c2, c3, c4, we obtain

c1 =
a11 + a22

2
, c2 =

a11 − a22
2

, c3 = a12, c4 = a21,

which is exactly the same solution as above. The upshot of taking this longer route is that
we realize that the solution we found is actually the only way to represent A as a linear
combination of the four given matrices.

(D) Show that the subspace of M2×2(F ) spanned by the matrices(
1 0
0 −1

)
,

(
0 1
0 0

)
, and

(
0 0
1 0

)
consists precisely of all 2× 2 matrices over F with trace 0.

Solution — I will formulate this solution in theorem-proof style.

Theorem. The subspace of M2×2(F ) spanned by the set

S =

{(
1 0
0 −1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)}
is the space of all 2× 2 matrices over F with trace 0.

Proof. Let W denote the subspace of M2×2(F ) consisting of all matrices with trace 0, i.e.,

W = {A ∈ M2×2(F ) : tr(A) = 0}.

(We know that this is a subspace of M2×2(F ) by Example 4 of Section 1.3.)

By inspection, all three matrices in S have trace 0. Therefore S ⊆ W and hence, by Theorem
1.5 (more precisely the second sentence thereof), span(S) ⊆ W. Thus, in order to prove that
span(S) = W, it suffices to show that W ⊆ span(S). That is, it suffices to show that every
2× 2 matrix with trace 0 is a linear combination of matrices in the set S.

Let

A =

(
a b
c d

)
be a matrix in W. Since tr(A) = a + d, we must have a + d = 0 or, equivalently, d = −a.
Now

a

(
1 0
0 −1

)
+ b

(
0 1
0 0

)
+ c

(
0 0
1 0

)
=

(
a b
c −a

)
= A,

which shows that A is indeed a linear combination of matrices in the set S.

Since span(S) ⊆ W and W ⊆ span(S), we conclude that span(S) = W, i.e., that span(S) is
the space of all 2× 2 matrices over F with trace 0.



(E) Find some polynomials that generate the subspace of P2(R) described by the differential
equation

xf ′(x) = f(x).

(As in calculus, f ′(x) denotes the derivative of the polynomial f(x).)

Solution — From calculus, we know that if

f(x) = a2x
2 + a1x+ a0

then
f ′(x) = 2a2x+ a1.

So the equation xf ′(x) = f(x) can be rewritten:

2a2x
2 + a1x = a2x

2 + a1x+ a0.

Matching coefficients of equal degree, we find the three equations

2a2 = a2, a1 = a1, 0 = a0.

The only solutions to these equations are when a0 = a2 = 0 but a1 can be any real num-
ber. So the solutions of this differential equation is the subspace of P2(R) generated by the
polynomial x.

Aside: In a differential equations courses like Math 23, you will see that solutions to differ-
ential equations can often be described using subspaces. This is because the derivative is a
linear operator:

(f + g)′(x) = f ′(x) + g′(x) and (cf)′(x) = cf ′(x),

where c is a scalar and f, g are differentiable functions. For example, the solution space of the
differential equation

f ′(x) = f(x)

is span(ex), which means that the solutions of this equation are precisely the functions of
the form f(x) = cex where c is an arbitrary constant. Similarly, the solution space of the
differential equation

f ′′(x) + f(x) = 0

is span(sin(x), cos(x)), which means that the solutions of this equation are precisely the func-
tions of the form f(x) = a sin(x) + b cos(x) where a and b are arbitrary constants.

What vector space are these solution spaces subspaces of?


