Worksheet for March 31

Math 24 - Spring 2014

Sample Solutions

(A) How many solutions does each of the systems of equations

$$
\begin{aligned}
x_{1}-x_{2}+5 x_{3} & =-1 \\
x_{2}-3 x_{3} & =2 \\
2 x_{1}+x_{2}+x_{3} & =1
\end{aligned} \text { and } \begin{array}{rlrl}
& & x_{1}-x_{2}+5 x_{3} & =3 \\
x_{2}-3 x_{3} & =-2 \\
2 x_{1}+x_{2}+x_{3} & =0
\end{array}
$$

have over the field \mathbb{R} ?

Solution - Interestingly, because the left-hand side of the two systems are identical, we can solve them simultaneously using the same operations. Subtract 2 times the first equation from the third to obtain:

$$
\begin{array}{rlrl}
x_{1}-x_{2}+5 x_{3} & =-1 \\
x_{2}-4 x_{3} & =2 & \text { and } & x_{1}-x_{2}+5 x_{3}
\end{array}=3 x_{2}-4 x_{3}=-2 . ~ . ~ 3 x_{2}-9 x_{3}=-6 .
$$

Then subtract 3 times the second equation from the third to obtain:

$$
\begin{array}{rlrlrl}
x_{1}-x_{2}+5 x_{3} & =-1 & & x_{1}-x_{2}+5 x_{3} & =3 \\
x_{2}-4 x_{3} & =2 & \text { and } & x_{2}-4 x_{3} & =-2 \\
0 & =-3 & & & 0 & =0
\end{array}
$$

We immediately see that the first system is has no solutions since $0 \neq-3$.
We also see that the second system at least has the solution $x_{1}=1, x_{2}=-2$, and $x_{3}=0$. In fact, it has infinitely many solutions. We can choose any value for x_{3}, say $x_{3}=t$. Then, the second equation forces $x_{2}=-2+4 x_{2}=-2+4 t$. Finally, the first requation forces

$$
x_{1}=3+x_{2}-5 x_{3}=3+(-2+4 t)-5 t=1-t .
$$

This process gives a different solution for each choice of real number t. Since there are infinitely many real numbers, there are infinitely many solutions to this system.
(B) Determine whether the vectors $(-1,2,1)$ and $(3,-2,0)$ are in the span of the set

$$
S=\{(1,0,2),(-1,1,1),(5,-3,1)\}
$$

in \mathbb{R}^{3}.

Solution - For the first vector, we are asked whether there are scalars a_{1}, a_{2}, a_{3} such that

$$
a_{1}(1,0,2)+a_{2}(-1,1,1)+a_{3}(5,-3,1)=(-1,2,1)
$$

The three coordinate equations lead to the first system from the previous problem, except that the unknowns are now called a_{1}, a_{2}, a_{3} instead of x_{1}, x_{2}, x_{3}. Since this system has no solutions, we conclude that there are no such scalars a_{1}, a_{2}, a_{3} and therefore that $(-1,2,1)$ is not in the span of the set S.
Similarly, for the second vector, we are asked whether there are scalars a_{1}, a_{2}, a_{3} such that

$$
a_{1}(1,0,2)+a_{2}(-1,1,1)+a_{3}(5,-3,1)=(3,-2,0) .
$$

The three coordinate equations lead to the first system from the previous problem, except that the unknowns are now called a_{1}, a_{2}, a_{3} instead of x_{1}, x_{2}, x_{3}. This system is consistent and it has the solution $a_{1}=1, a_{2}=-2, a_{3}=0$. So $(3,-2,0)$ is in the span of S and, in fact,

$$
(1,0,2)-2(-1,1,1)=(3,-2,0)
$$

is one way to write this vector as a linear combination of elements of S.
(C) Show that the matrices

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad \text { and } \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

generate $\mathrm{M}_{2 \times 2}(\mathbb{R})$.
Solution - We are asked to show that every 2×2 matrix

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

can be written as a linear combination of the four matrices listed above. Well,

$$
A=\frac{a_{11}+a_{22}}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\frac{a_{11}-a_{22}}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+a_{12}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+a_{21}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

is one way to do just that!
While it's not difficult to guess the representation above, a more systematic approach is to set up a system of linear equations as follows. We are looking for scalars $c_{1}, c_{2}, c_{3}, c_{4}$ such that

$$
A=c_{1}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+c_{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+c_{3}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c_{4}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

The four coordinate equations resulting from this are:

$$
\begin{array}{ll}
a_{11}=c_{1}+c_{2}, & a_{12}=c_{3} \\
a_{21}=c_{4}, & a_{22}=c_{1}-c_{2}
\end{array}
$$

If we solve for $c_{1}, c_{2}, c_{3}, c_{4}$, we obtain

$$
c_{1}=\frac{a_{11}+a_{22}}{2}, \quad c_{2}=\frac{a_{11}-a_{22}}{2}, \quad c_{3}=a_{12}, \quad c_{4}=a_{21},
$$

which is exactly the same solution as above. The upshot of taking this longer route is that we realize that the solution we found is actually the only way to represent A as a linear combination of the four given matrices.
(D) Show that the subspace of $\mathrm{M}_{2 \times 2}(F)$ spanned by the matrices

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad \text { and } \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

consists precisely of all 2×2 matrices over F with trace 0 .

Solution - I will formulate this solution in theorem-proof style.

Theorem. The subspace of $\mathrm{M}_{2 \times 2}(F)$ spanned by the set

$$
S=\left\{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right\}
$$

is the space of all 2×2 matrices over F with trace 0 .
Proof. Let W denote the subspace of $\mathrm{M}_{2 \times 2}(F)$ consisting of all matrices with trace 0 , i.e.,

$$
\mathrm{W}=\left\{A \in \mathrm{M}_{2 \times 2}(F): \operatorname{tr}(A)=0\right\} .
$$

(We know that this is a subspace of $\mathrm{M}_{2 \times 2}(F)$ by Example 4 of Section 1.3.)
By inspection, all three matrices in S have trace 0 . Therefore $S \subseteq \mathrm{~W}$ and hence, by Theorem 1.5 (more precisely the second sentence thereof), $\operatorname{span}(S) \subseteq \mathrm{W}$. Thus, in order to prove that $\operatorname{span}(S)=\mathrm{W}$, it suffices to show that $\mathrm{W} \subseteq \operatorname{span}(S)$. That is, it suffices to show that every 2×2 matrix with trace 0 is a linear combination of matrices in the set S.
Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

be a matrix in W. Since $\operatorname{tr}(A)=a+d$, we must have $a+d=0$ or, equivalently, $d=-a$. Now

$$
a\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right)=A,
$$

which shows that A is indeed a linear combination of matrices in the set S.
Since $\operatorname{span}(S) \subseteq \mathrm{W}$ and $\mathrm{W} \subseteq \operatorname{span}(S)$, we conclude that $\operatorname{span}(S)=\mathrm{W}$, i.e., that $\operatorname{span}(S)$ is the space of all 2×2 matrices over F with trace 0 .
(E) Find some polynomials that generate the subspace of $P_{2}(\mathbb{R})$ described by the differential equation

$$
x f^{\prime}(x)=f(x)
$$

(As in calculus, $f^{\prime}(x)$ denotes the derivative of the polynomial $f(x)$.)

Solution - From calculus, we know that if

$$
f(x)=a_{2} x^{2}+a_{1} x+a_{0}
$$

then

$$
f^{\prime}(x)=2 a_{2} x+a_{1}
$$

So the equation $x f^{\prime}(x)=f(x)$ can be rewritten:

$$
2 a_{2} x^{2}+a_{1} x=a_{2} x^{2}+a_{1} x+a_{0}
$$

Matching coefficients of equal degree, we find the three equations

$$
2 a_{2}=a_{2}, \quad a_{1}=a_{1}, \quad 0=a_{0} .
$$

The only solutions to these equations are when $a_{0}=a_{2}=0$ but a_{1} can be any real number. So the solutions of this differential equation is the subspace of $P_{2}(\mathbb{R})$ generated by the polynomial x.
Aside: In a differential equations courses like Math 23, you will see that solutions to differential equations can often be described using subspaces. This is because the derivative is a linear operator:

$$
(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x) \quad \text { and } \quad(c f)^{\prime}(x)=c f^{\prime}(x)
$$

where c is a scalar and f, g are differentiable functions. For example, the solution space of the differential equation

$$
f^{\prime}(x)=f(x)
$$

is $\operatorname{span}\left(e^{x}\right)$, which means that the solutions of this equation are precisely the functions of the form $f(x)=c e^{x}$ where c is an arbitrary constant. Similarly, the solution space of the differential equation

$$
f^{\prime \prime}(x)+f(x)=0
$$

is $\operatorname{span}(\sin (x), \cos (x))$, which means that the solutions of this equation are precisely the functions of the form $f(x)=a \sin (x)+b \cos (x)$ where a and b are arbitrary constants.
What vector space are these solution spaces subspaces of?

