
Proof Strategies

MATH 24 — SPRING 2014

This document is designed to expose you to a variety of proof techniques. The margins are set
wide to make it easier for you to take notes as you read. You will find some useful reading notes and
pointers in the right margin.

As you read, pay attention to the structure of the statements and how that structure impacts their
associated proofs. Here are a few structural features to look for:

• A conjunction is a compound statement of the form ‘A and B’ or any phrase that asserts that
two (or more) given statements hold.

• A disjunction is a compound statement of the form ‘A or B’ or any phrase that asserts that at
least one of two (or more) given statements hold.

• A negation is a statement of the form ‘not A’, ‘it is not the case that A’, or any phrase that
denies a given statement.

• An implication is a compound statement of the form ‘if A then B’, ‘A entails B’, ‘B whenever
A’, or any phrase that asserts that one statement is a logical consequence of another statement.

• An equivalence is a compound statement of the form ‘A if and only if B’, ‘A exactly when
B’, ‘A is necessary and sufficient for B’, or any phrase that expresses that two (or more) given
statements are logically equivalent to each other.

The majority of mathematical theorems are implications of the form ‘if A then B’. However, the
hypothesis A and the conclusion B are often compound statements. For example, the statement of
Theorem 10 has the form ‘if A then B and C’.

The basic method for proving an implication ‘if A then B’ is by direct deduction:

First assume A.
Then do some logical reasoning steps until you reach the conclusion that B holds.
Conclude that if A then B.

As you will soon see, this is by no means the only way to prove an implication. The structure of A
and B gives key clues regarding which method to use, so pay close attention how the structure of A
and B leads to different styles of proof.

The most subtle proof method you will encounter here is when proving a negative ‘not A’. The
basic method for proving negative statements is by contradiction:

First assume A.
Then do some logical reasoning steps until you reach a contradictory conclusion.
Conclude that not A.

The contradictory conclusion can be anything that is blatently false or that contradicts a fact you
already established.
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DEFINITION 1. An integer n is even if there is an integer m The term being defined is usually typeset in a
way that makes it stand out.such that n = 2m.

DEFINITION 2. An integer n is odd if there is an integer m
such that n = 2m+ 1.

THEOREM 3. Suppose m and n are integers. If m is even then
The first sentence of a theorem often serves
to explain what kind of objects the variable
symbols stand for.mn is also even.

Proof. To say that m is even means that there is an integer m
such that m = 2k. After multiplying both sides by n, we obtain The first step of a proof is often to expand def-

initions, in this case the definition of ‘even’.

mn = 2kn.

Since kn is an integer, follows that mn is even. Therefore, if m
is even then so is mn. The last step of a proof should match the con-

clusion of the theorem.

THEOREM 4. Suppose m and n are integers. If m and n are
both odd, then mn is odd.

Proof. To say that m is odd means that there is an integer k
such that m = 2k+1; similarly, to say that n is odd means that
there is an integer ` such that n = 2`+ 1. In this case,

mn = (2k + 1)(2`+ 1) = 4k`+ 2k + 2`+ 1,

or Notice how the use of parentheses clarifies
the key step in this proof.

mn = 2(2k`+ k + `) + 1.

Since 2k`+k+` is an integer, it follows that mn is odd. There-
fore, if m and n are both odd then so is mn.

AXIOM 5 (Archimedean Property of the Real Numbers). For
every real number x there is an integer n such that n ≤ x <
n+ 1.

An axiom is a basic assumption that we be-
lieve without proof. The properties (VS 1–
8) of vector spaces are often called axioms
since they are the basic assumptions that de-
fine vector spaces.THEOREM 6. Every integer is either even or odd.

Proof. Let n be an arbitrary integer. By the Archimedean Prop- The keyword ‘arbitrary’ means that we are
not making any special assumptions about n.erty, there is an integer m such that

m ≤ n

2
< m+ 1.

Multiplying through by 2, we find that

2m ≤ n < 2(m+ 1) = 2m+ 2.

There are only two integers in the interval [2m, 2m+2), namely
2m and 2m + 1. Because n is an integer, we must either have Note that the proper use of punctuation is es-

sential to properly parse this.
n = 2m and hence n is even, or have n = 2m + 1 and hence
n is odd. Since n is an arbitrary integer, we conclude that every
integer is either even or odd.
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THEOREM 7. No integer is both even and odd.

Proof. Suppose, for the sake of contradiction, that there is an
integer n which is both even and odd. To say that n is even

The phrase ‘for the sake of contradiction’ in-
dicates that we are proving a negative and
what follows is a contradictory assumption.means that there is an integer p such that n = 2p; to say that n

is odd means that there is an integer q such that n = 2q+1. We
then have

2p = 2q + 1,

or
2(p− q) = 1.

Since p− q is an integer, we conclude that 1 is an even integer!
This is a contradiction, so our assumption that there is an integer An exclamation point is a good way to indi-

cate that we have reached a contradiction.
which is both even and odd must be false.

THEOREM 8. An integer is odd if and only if it is not even.
The phrase ‘if and only if’ is a very com-
mon way of expressing the equivalence of
two statements. To prove an equivalence one
must prove both the forward and the back-
ward implications.

Proof. Let n be an integer. We must show that (a) if n is odd
then n is not even and, conversely, that (b) if n is not even then
n is odd.

For (a), suppose that n is odd. To see that n is not even,
suppose instead that n is even. This contradicts Theorem 7,

The keyword ‘instead’ is a quick way to indi-
cate that we are proving a negative and what
follows is a contradictory assumption.which says that n cannot be both even and odd. Therefore, if n

is odd then n is not even.
For (b), suppose that n is not even. By Theorem 6, either n

is odd or n is even. Since n is not even, it must be that n is odd.
Therefore, if n is not even then n is odd.

COROLLARY 9. An integer is even if and only if it is not odd. A corollary is an immediate consequence of
a theorem whose proof is left to the reader.

THEOREM 10. Suppose m and n are integers. If mn is odd
then m and n are both odd.

Proof. We will prove the contrapositive: if m and n are not both
odd then mn is not odd. By Corollary 9, to say that mn is not

The contrapositve of an implication ‘if A then
B’ is ‘if not B then not A’. The contrapositive
is always logically equivalent to the original
implication.odd is the same as saying that mn is even. To say that m and n

are not both odd is the same as saying that at least one of m and
n is even. So, another way to state the contrapositive is: if m or
n is even then mn is even.

We prove this by cases:

• On the one hand, if m is even then mn is even by Theo-
rem 3.

• On the other hand, if n is even then mn = nm is even by
Theorem 3.

Either way, we reach the conclusion that mn is even. Therefore,
if m or n is even then mn is even.
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LEMMA 11. An integer n is even if and only if its square n2 is
even.

A lemma is a theorem with a very specialized
purpose. This particular lemma will be used
twice in Theorem 12 but it is of little interest
on its own.Proof. We must show that (a) if n is even then n2 is also even

and, conversely, that (b) if n2 is even then n is also even.
Part (a) follows directly from Theorem 3 with m = n.
For part (b), we will prove the contrapositive: if n is not

even then n2 is also not even. By Theorem 8, another way to
state the contrapositive is that: if n is odd then n2 is also odd.
This follows directly from Theorem 4 with m = n.

THEOREM 12.
√
2 is an irrational number.

Note that an irrational number is one that is
not rational, so this is a disguised negative
statement.

Proof. Suppose, for the sake of contradiction, that
√
2 is a ra-

tional number. Say √
2 =

p

q
,

where p and q are integers with no common factors.

We’re expanding the definition of rational
number as well as the fact that fractions can
always be reduced in such a way that the nu-
merator and denominator have no common
factors.

Squaring both sides of the above equality, we obtain

2 =
p2

q2

or equivalently
2q2 = p2.

Since q2 is an integer, we see that p2 is an even integer. By
Lemma 11, it follows that p is also even. Therefore, there is an
integer r such that p = 2r.

Substituting p = 2r in 2q2 = p2, we see that

2q2 = 4r2

or, after dividing both sides by 2,

q2 = 2r2.

Since r2 is an integer, we see that q2 is an even integer. Since
q2 is even, it follows from Lemma 11 that q is also even. But p
and q have no common factors, so they cannot both be even!

This is a contradiction, so we conclude that our original as-
sumption that

√
2 is a rational number must have been false and

therefore that
√
2 is an irrational number.
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Discussion
As you have observed, different types of statements lead to different types of proofs. There are no
fixed rules or magic recipes for writing proofs but here are some helpful observations.

As mentioned in the introduction, many mathematical statements are implications of the form
‘if A then B’ (and variations). The most common way to prove such is by direct deduction:

First assume A holds.
Then do some logical reasoning steps until you reach the conclusion that B holds.
Conclude that if A then B.

Another common method to prove ‘if A then B’ is to prove the contrapositive ‘if not B then not
A’ instead. This method was used to prove Theorem 10 and part (b) of Lemma 11. A variation on
proving the contrapositive is indirect deduction:

First assume B fails (i.e. not B).
Then do some logical reasoning steps until you reach the conclusion that A also fails.
Conclude that if A then B.

Note that this is essentially direct deduction of the contrapositive, only the conclusion is the direct
implication ‘if A then B’ rather than the contrapositive ‘if not B then not A’.1

When an implication ‘if A then B’ has a compound hypothesis A or a compound conclusion B,
then you get different refinements of the basic strategies. Conjunctions (‘and’) are typically easy to
handle:

• If a conjunction occurs in a hypothesis ‘if A and B then C’ (as in Theorem 4) then you simply
have two assumptions A and B to break down at the start of the proof.

• If a conjunction occurs in a conclusion ‘if A then B and C’ then you really have two facts to
prove: ‘if A then B’ and ‘if A then C’.

Disjunctions (‘or’) tend to be trickier:

• If a disjunction occurs in a hypothesis ‘if A or B then C’, cover all cases and prove both ‘if
A then C’ and ‘if B then C’. The reason is that while you know one of A and B is true, you
don’t know which one. By giving two proofs, one for each case, you know that one of them
will work and reach the desired conclusion.

• If a disjunction occurs in a conclusion ‘if A then B or C’, the most common proof strategy is
to assume that one of the two fails and use that (together with the hypothesis A) to derive the
other conclusion. In other words, you can either prove ‘if A and not B then C’ or prove ‘if A
and not C then B’ (your choice!).2

As a general alternative to the above, consider using the contrapositive. Taking a negative of a
conjunction and a disjunction has an interesting effect, known as the De Morgan Laws:

‘not (A and B)’ is logically equivalent to ‘(not A) or (not B)’
1If you use the contrapositive or indirect deduction, remember to announce this ahead of time. Starting a proof of an

implication by denying the conclusion, is an incredibly bold move! Be nice to the reader, this is not an action movie!
2If you use this method, remember to announce this ahead of time and explain which path you’re choosing. You don’t

want to confuse the reader with a seemingly random assumption.
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‘not (A or B)’ is logically equivalent to ‘(not A) and (not B)’

In other words, negation transforms conjunctions into disjunctions and vice versa! This is what
happened in Theorem 10. The original statement is of the form ‘if A then B and C’ (where A is ‘mn
is odd’, B is ‘m is odd’, C is ‘n is odd’) and we decided to prove the contrapositive ‘if not (B and
C) then not A’. The first paragraph of the proof explains how ‘not (B and C)’ is the same as ‘(not B)
or (not C)’, which is the first De Morgan Law. In the end we proved a statement of the form ‘if B̄ or
C̄ then Ā’ (where Ā is ‘mn is even’, B̄ is ‘m is even’, C̄ is ‘n is even’), for which we used a proof
by cases as described above.

Negations are the trickiest of all. You may have heard the saying that “you can’t prove a negative”
or “there is no evidence for absence.” While this is not the case, it is true that it can be very difficult
to prove a negative. As mentioned in the introduction, the main strategy for proving a negative ‘not
A’ is called proof by contradiction3

First assume A.
Then do some logical reasoning steps until you reach a contradictory conclusion.
Conclude that not A.

In other words, to prove not A you need to prove that A is impossible since it leads to conclusions
that are known to be false. Note that such a proof strategy is always an option since any statement
A is logically equivalent to ‘not not A’, but since proofs by contradiction tend to be more difficult, it
is often a good idea to first try a more direct method before this one.

Theorem 7 and Theorem 12 are both examples of proofs of negative statements. (Note that
Theorem 12 is a slightly disguised negative since the negative is part of the word ‘irrational’, which
is just another way of saying ‘not rational’.) The difficulty in these proofs is that the contradictory
conclusion can be anything! In Theorem 7 the contradictory conclusion is ‘1 is even’, which is
obviously false, and in Theorem 12 the contrary conclusion is that ‘p and q are even numbers with
no common factors’, which is impossible since two even numbers always have the common factor 2.
There is no way to predict what this contradictory conclusion will be just by looking at the statement
of the theorems. Proofs of negatives always require a certain amount of insight, creativity, or just
plain luck to see what the contradictory conclusion will be. Because there is no magic recipe for
this, proofs of negatives are consistently more difficult than others. . .

Of course, this is not the end of the story for proofs, a lot of other ingredients go into the
deductive steps in a proof. While the above discussion applies to any mathematical topic, these
extra ingredients are generally specific to each topic. In Math 24, we will learn a lot of tools and
techniques that are specific to linear algebra. In later courses, you will learn tools and techniques
that are specific to other fields. However, the basic proof methods of proof that we just discussed
as well as other general methods that we will discuss later in the course will follow you throughout
your mathematical career. In fact, since the tools of linear algebra is used in almost all branches of
mathematics, everything you learn in Math 24 will be useful for you later on!

3Needless to say, you should always give a clue that you are doing this. Starting a proof of ‘not A’ by assuming A sounds
plainly wrong if you don’t know that this is a proof by contradiction.
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