Slides for May 28

Math 24 - Spring 2014

Nilpotent Transformations

Theorem
Suppose $T: V \rightarrow \mathrm{~V}$ is a nilpotent linear operator on a finite dimensional vector space. There are vectors $w_{1}, w_{2}, \ldots, w_{\ell}$ such that

$$
V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{\ell}
$$

where each $W_{i}=\operatorname{span}\left\{w_{i}, T\left(w_{i}\right), T^{2}\left(w_{i}\right), \ldots\right\}$ is the T-cyclic space generated by w_{i}.

Jordan basis β :

$$
\left.\begin{array}{lll}
\bullet T^{3}\left(w_{1}\right) & \bullet T^{2}\left(w_{2}\right) & \bullet T^{2}\left(w_{3}\right)
\end{array} \bullet w_{4}\right)
$$

Nilpotent Transformations

$$
[T]_{\beta}=\left(\begin{array}{cccc|ccc|ccc|c}
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{1} & \mathbf{0} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{0} & \mathbf{0} & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{1} & \mathbf{0} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{0} & \mathbf{0} & \mathbf{0} & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{0}
\end{array}\right)
$$

Nilpotent Transformations

Jordan basis β :

$$
\begin{array}{llll}
\bullet T^{3}\left(w_{1}\right) & \bullet T^{2}\left(w_{2}\right) & \bullet T^{2}\left(w_{3}\right) & \bullet w_{4} \\
\bullet T^{2}\left(w_{1}\right) & \bullet T\left(w_{2}\right) & \bullet T\left(w_{3}\right) \\
\bullet T\left(w_{1}\right) & \bullet w_{2} & \bullet w_{3} \\
\bullet w_{1} & &
\end{array}
$$

$$
\begin{array}{lr}
\text { nullity }(T)=4 & \text { (total number of cycles) } \\
\text { nullity }\left(T^{2}\right)=7 & \text { (dots in the first row) } \\
\text { nullity }\left(T^{3}\right)=10 & \text { (dots in first thre rows) } \\
\text { nullity }\left(T^{4}\right)=11 & \text { (total dots) } \\
& \text { (dimension of space) }
\end{array}
$$

Jordan Canonical Form

Theorem
Suppose $T: V \rightarrow \mathrm{~V}$ is a linear operator on a finite dimensional vector space V. Suppose the characteristic polynomial of T splits

$$
\operatorname{det}(T-t /)=\left(\lambda_{1}-t\right)^{m_{1}}\left(\lambda_{2}-t\right)^{m_{2}} \cdots\left(\lambda_{p}-t\right)^{m_{p}}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ are distinct. Then, for each $i=1,2, \ldots, p$:

- $\mathrm{K}_{\lambda_{i}}=\mathrm{N}\left(\left(T-\lambda_{i} I\right)^{m_{i}}\right)$
- $\operatorname{dim}\left(\mathrm{K}_{\lambda_{i}}\right)=m_{i}$
- The restriction of $T-\lambda_{i} l$ to K_{i} is nilpotent.

Furthermore,

$$
\mathrm{V}=\mathrm{K}_{\lambda_{1}} \oplus \mathrm{~K}_{\lambda_{2}} \oplus \cdots \oplus \mathrm{~K}_{\lambda_{p}}
$$

and if β_{i} is a Jordan basis for $T-\lambda_{i}$ I restricted to $\mathrm{K}_{\lambda_{i}}$, then $\beta=\beta_{1} \cup \beta_{2} \cup \cdots \cup \beta_{p}$ is a Jordan basis for T.

Jordan Canonical Form

To find a Jordan basis for $T: \mathrm{V} \rightarrow \mathrm{V} \ldots$
For each eigenvalue λ of T :

1. Compute

$$
\mathrm{N}(T-\lambda I) \subseteq \mathrm{N}(T-\lambda I)^{2} \subseteq \mathrm{~N}(T-\lambda I)^{3} \subseteq \cdots
$$

until you reach K_{λ}.
2. Write the dot pattern that matches the nullities you just found.
3. Fill in the dot pattern by finding appropriate initial vectors for each cycle, starting with the longest cycles.
4. Write down the base for K_{λ}, cycle per cycle, each ending with the initial vector.
Assemble the bases you just found into a Jordan basis for T.

