Slides for May 28

Math 24 — Spring 2014

Nilpotent Transformations

Theorem

Suppose $T : V \to V$ is a nilpotent linear operator on a finite dimensional vector space. There are vectors w_1, w_2, \ldots, w_ℓ such that

$$V = W_1 \oplus W_2 \oplus \cdots \oplus W_\ell$$

where each $W_i = \text{span}\{w_i, T(w_i), T^2(w_i), \ldots\}$ is the T-cyclic space generated by w_i .

Jordan basis β :

•
$$T^{3}(w_{1})$$
 • $T^{2}(w_{2})$ • $T^{2}(w_{3})$ • w_{4}
• $T^{2}(w_{1})$ • $T(w_{2})$ • $T(w_{3})$
• $T(w_{1})$ • w_{2} • w_{3}
• w_{1}

Nilpotent Transformations

$$[T]_{\beta} = \begin{pmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & | & \mathbf{0} & 0 & 0 & | & \mathbf{0} & 0 & 0 & | & \mathbf{0} & | & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & | & \mathbf{0} & 0 & 0 & 0 & 0 & | & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & | & 0 & 0 & 0 & 0 & 0 & 0 & | & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & | & \mathbf{0} & | & \mathbf{0} & 0 & | & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & | & \mathbf{0} & 0 & | & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & | & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} &$$

Nilpotent Transformations

Jordan basis β :

•
$$T^{3}(w_{1})$$
 • $T^{2}(w_{2})$ • $T^{2}(w_{3})$ • w_{4}
• $T^{2}(w_{1})$ • $T(w_{2})$ • $T(w_{3})$
• $T(w_{1})$ • w_{2} • w_{3}
• w_{1}

nullity(T) = 4(total number of cycles)
(dots in the first row)nullity(T^2) = 7(dots in first two rows)nullity(T^3) = 10(dots in first three rows)nullity(T^4) = 11(total dots)
(dimension of space)

Jordan Canonical Form

Theorem

Suppose $T : V \rightarrow V$ is a linear operator on a finite dimensional vector space V. Suppose the characteristic polynomial of T splits

$$\det(T-tI)=(\lambda_1-t)^{m_1}(\lambda_2-t)^{m_2}\cdots(\lambda_p-t)^{m_p}$$

where $\lambda_1, \lambda_2, \dots, \lambda_p$ are distinct. Then, for each $i = 1, 2, \dots, p$: $\mathsf{K}_{\lambda_i} = \mathsf{N}((T - \lambda_i I)^{m_i})$

- dim(K_{λ_i}) = m_i
- The restriction of $T \lambda_i I$ to K_i is nilpotent.

Furthermore,

$$\mathsf{V}=\mathsf{K}_{\lambda_1}\oplus\mathsf{K}_{\lambda_2}\oplus\cdots\oplus\mathsf{K}_{\lambda_p}$$

and if β_i is a Jordan basis for $T - \lambda_i I$ restricted to K_{λ_i} , then $\beta = \beta_1 \cup \beta_2 \cup \cdots \cup \beta_p$ is a Jordan basis for T.

Jordan Canonical Form

To find a Jordan basis for $T : V \rightarrow V...$ For each eigenvalue λ of T:

1. Compute

$$N(T - \lambda I) \subseteq N(T - \lambda I)^2 \subseteq N(T - \lambda I)^3 \subseteq \cdots$$

until you reach K_{λ} .

- 2. Write the dot pattern that matches the nullities you just found.
- 3. Fill in the dot pattern by finding appropriate initial vectors for each cycle, starting with the longest cycles.
- 4. Write down the base for K_{λ} , cycle per cycle, each ending with the initial vector.

Assemble the bases you just found into a Jordan basis for T.