Slides for May 19

Math 24 — Spring 2014

Theorem

Suppose V is a finite dimensional inner product space. If $T: V \rightarrow V$ is a normal operator then:

(a)
$$||T(x)|| = ||T^*(x)||$$
 for all $x \in V$.
(b) $T(x) = \lambda x$ iff $T^*(x) = \overline{\lambda} x$.
(c) If $T(x_1) = \lambda_1 x_1$, $T(x_2) = \lambda_2 x_2$ and $\lambda_1 \neq \lambda_2$ then $\langle x_1, x_2 \rangle = 0$.

Proof of (a).

On the one hand, $||T(x)||^2 = \langle T(x), T(x) \rangle = \langle x, T^*T(x) \rangle$. On the other hand, $||T^*(x)||^2 = \langle T^*(x), T^*(x) \rangle = \langle x, TT^*(x) \rangle$ because $T^{**} = T$. Since $T^*T = TT^*$, we see that $||T(x)||^2 = ||T^*(x)||^2$.

Theorem

Suppose V is a finite dimensional inner product space. If $T : V \to V$ is a normal operator then: (a) $||T(x)|| = ||T^*(x)||$ for all $x \in V$. (b) $T(x) = \lambda x$ iff $T^*(x) = \overline{\lambda} x$. (c) If $T(x_1) = \lambda_1 x_1$, $T(x_2) = \lambda_2 x_2$ and $\lambda_1 \neq \lambda_2$ then $\langle x_1, x_2 \rangle = 0$.

Proof of (b).

Since $T - \lambda I$ is also normal with adjoint $T^* - \overline{\lambda}I$, it follows from (a) that $N(T - \lambda I) = N(T^* - \overline{\lambda}I)$.

Theorem

Suppose V is a finite dimensional inner product space. If $T: V \rightarrow V$ is a normal operator then:

(a)
$$||T(x)|| = ||T^*(x)||$$
 for all $x \in V$.
(b) $T(x) = \lambda x$ iff $T^*(x) = \overline{\lambda} x$.
(c) If $T(x_1) = \lambda_1 x_1$, $T(x_2) = \lambda_2 x_2$ and $\lambda_1 \neq \lambda_2$ then $\langle x_1, x_2 \rangle = 0$.

Proof of (c).

On the one hand, $\langle T(x_1), x_2 \rangle = \langle \lambda_1 x_1, x_2 \rangle = \lambda_1 \langle x_1, x_2 \rangle$. On the other hand, $\langle x_1, T^*(x_2) \rangle = \langle x_1, \overline{\lambda_2} x_2 \rangle = \lambda_2 \langle x_1, x_2 \rangle$ because of (b). Since $\langle T(x_1), x_2 \rangle = \langle x_1, T^*(x_2) \rangle$, we see that $(\lambda_1 - \lambda_2) \langle x_1, x_2 \rangle = 0$. If $\lambda_1 \neq \lambda_2$ then $\langle x_1, x_2 \rangle = 0$.

Theorem

Suppose V is a finite dimensional inner product space. If $T : V \to V$ is a normal operator then: (a) $||T(x)|| = ||T^*(x)||$ for all $x \in V$. (b) $T(x) = \lambda x$ iff $T^*(x) = \overline{\lambda} x$. (c) If $T(x_1) = \lambda_1 x_1$, $T(x_2) = \lambda_2 x_2$ and $\lambda_1 \neq \lambda_2$ then $\langle x_1, x_2 \rangle = 0$.

Corollary

For a normal operator $T:V\rightarrow V$ on a finite dimensional inner product space:

- ► The eigenvalues of T are precisely the conjugates of the eigenvalues of T*.
- ► The eigenspaces of T and T* corresponding to conjugate eigenvalues are the same.
- The eigenspaces of T are mutually orthogonal to each other.

Theorem

Suppose V is a finite dimensional complex inner product space. A linear operator $T : V \rightarrow V$ is normal if and only if there is an orthonormal basis of eigenvectors of T.

Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be the distinct eigenvalues of T and let E_1, E_2, \ldots, E_k be the corresponding eigenspaces. Two key observations:

- T is diagonalizable if and only if $E_1 + E_2 + \cdots + E_k = V$.
- ► Since the eigenspaces E₁, E₂,..., E_k are mutually orthogonal, *T* is diagonalizable if and only if it has an orthonormal basis of eigenvectors.

So it is enough to show that $E_1 + E_2 + \cdots + E_k = V$.

Lemma (A)

Each orthogonal complement E_i^{\perp} is T-invariant.

Proof of Lemma (A).

First note that $E_i = N(T^* - \overline{\lambda_i}I)$ by part (b) of the first Theorem. Suppose $y \in E_i^{\perp}$. Given any $x \in E_i$, we have

$$\langle T(y),x
angle=\langle y,T^*(x)
angle=\langle y,\overline{\lambda}x
angle=\lambda\langle y,x
angle=0.$$

Therefore, $T(y) \in \mathsf{E}_i^{\perp}$ too.

Lemma (A)

Each orthogonal complement E_i^{\perp} is T-invariant.

Lemma (B)

The space $W = (E_1 + E_2 + \dots + E_k)^{\perp} = E_1^{\perp} \cap E_2^{\perp} \cap \dots \cap E_k^{\perp}$ is *T*-invariant.

Proof of Lemma (B).

If $x \in W$ then $x \in \mathsf{E}_i^{\perp}$, so $T(x) \in \mathsf{E}_i^{\perp}$ by Lemma (A). Since this is true for $i = 1, 2, \ldots, k$, we see that $T(x) \in \mathsf{W}$.

Lemma (A)

Each orthogonal complement E_i^{\perp} is T-invariant.

Lemma (B)

The space $W = (E_1 + E_2 + \dots + E_k)^{\perp} = E_1^{\perp} \cap E_2^{\perp} \cap \dots \cap E_k^{\perp}$ is *T*-invariant.

Lemma (C) $W = \{0\} \text{ and therefore } \mathsf{E}_1 + \mathsf{E}_2 + \dots + \mathsf{E}_k = \{0\}^\perp = \mathsf{V}.$

Proof of Lemma (C).

The restriction T_W has no eigenvectors nor eigenvalues, so the characteristic polynomial of T_W must be constant otherwise it would have a root in \mathbb{C} . Since the degree of the characteristic polynomial is dim(W), it must be that $W = \{0\}$.

Diagonalization of Self-Adjoint Operators

Theorem

Suppose V is a finite dimensional complex inner product space. A linear operator $T : V \rightarrow V$ is self-adjoint if and only if all eigenvalues of T are real and there is an orthonormal basis of eigenvectors of T.

Corollary

The eigenvalues of a real symmetric matrix are all real. Furthermore, every real symmetric matrix is diagonalizable.

Theorem

Suppose V is a finite dimensional real inner product space. A linear operator $T : V \rightarrow V$ is self-adjoint if and only if there is an orthonormal basis of eigenvectors of T.