Slides for May 19

Math 24 - Spring 2014

Eigenvectors of Normal Operators

Theorem

Suppose V is a finite dimensional inner product space. If $T: \mathrm{V} \rightarrow \mathrm{V}$ is a normal operator then:
(a) $\|T(x)\|=\left\|T^{*}(x)\right\|$ for all $x \in \mathrm{~V}$.
(b) $T(x)=\lambda x$ iff $T^{*}(x)=\bar{\lambda} x$.
(c) If $T\left(x_{1}\right)=\lambda_{1} x_{1}, T\left(x_{2}\right)=\lambda_{2} x_{2}$ and $\lambda_{1} \neq \lambda_{2}$ then $\left\langle x_{1}, x_{2}\right\rangle=0$.

Proof of (a).
On the one hand, $\|T(x)\|^{2}=\langle T(x), T(x)\rangle=\left\langle x, T^{*} T(x)\right\rangle$.
On the other hand, $\left\|T^{*}(x)\right\|^{2}=\left\langle T^{*}(x), T^{*}(x)\right\rangle=\left\langle x, T T^{*}(x)\right\rangle$ because $T^{* *}=T$.
Since $T^{*} T=T T^{*}$, we see that $\|T(x)\|^{2}=\left\|T^{*}(x)\right\|^{2}$.

Eigenvectors of Normal Operators

Theorem
Suppose V is a finite dimensional inner product space. If $T: \mathrm{V} \rightarrow \mathrm{V}$ is a normal operator then:
(a) $\|T(x)\|=\left\|T^{*}(x)\right\|$ for all $x \in \mathrm{~V}$.
(b) $T(x)=\lambda x$ iff $T^{*}(x)=\bar{\lambda} x$.
(c) If $T\left(x_{1}\right)=\lambda_{1} x_{1}, T\left(x_{2}\right)=\lambda_{2} x_{2}$ and $\lambda_{1} \neq \lambda_{2}$ then $\left\langle x_{1}, x_{2}\right\rangle=0$.

Proof of (b).
Since $T-\lambda I$ is also normal with adjoint $T^{*}-\bar{\lambda} I$, it follows from (a) that $\mathrm{N}(T-\lambda I)=\mathrm{N}\left(T^{*}-\bar{\lambda} I\right)$.

Eigenvectors of Normal Operators

Theorem

Suppose V is a finite dimensional inner product space. If $T: \mathrm{V} \rightarrow \mathrm{V}$ is a normal operator then:
(a) $\|T(x)\|=\left\|T^{*}(x)\right\|$ for all $x \in \mathrm{~V}$.
(b) $T(x)=\lambda x$ iff $T^{*}(x)=\bar{\lambda} x$.
(c) If $T\left(x_{1}\right)=\lambda_{1} x_{1}, T\left(x_{2}\right)=\lambda_{2} x_{2}$ and $\lambda_{1} \neq \lambda_{2}$ then $\left\langle x_{1}, x_{2}\right\rangle=0$.

Proof of (c).
On the one hand, $\left\langle T\left(x_{1}\right), x_{2}\right\rangle=\left\langle\lambda_{1} x_{1}, x_{2}\right\rangle=\lambda_{1}\left\langle x_{1}, x_{2}\right\rangle$.
On the other hand, $\left\langle x_{1}, T^{*}\left(x_{2}\right)\right\rangle=\left\langle x_{1}, \overline{\lambda_{2}} x_{2}\right\rangle=\lambda_{2}\left\langle x_{1}, x_{2}\right\rangle$ because of (b).
Since $\left\langle T\left(x_{1}\right), x_{2}\right\rangle=\left\langle x_{1}, T^{*}\left(x_{2}\right)\right\rangle$, we see that $\left(\lambda_{1}-\lambda_{2}\right)\left\langle x_{1}, x_{2}\right\rangle=0$. If $\lambda_{1} \neq \lambda_{2}$ then $\left\langle x_{1}, x_{2}\right\rangle=0$.

Eigenvectors of Normal Operators

Theorem

Suppose V is a finite dimensional inner product space. If
$T: \mathrm{V} \rightarrow \mathrm{V}$ is a normal operator then:
(a) $\|T(x)\|=\left\|T^{*}(x)\right\|$ for all $x \in \mathrm{~V}$.
(b) $T(x)=\lambda x$ iff $T^{*}(x)=\bar{\lambda} x$.
(c) If $T\left(x_{1}\right)=\lambda_{1} x_{1}, T\left(x_{2}\right)=\lambda_{2} x_{2}$ and $\lambda_{1} \neq \lambda_{2}$ then $\left\langle x_{1}, x_{2}\right\rangle=0$.

Corollary

For a normal operator $T: V \rightarrow \vee$ on a finite dimensional inner product space:

- The eigenvalues of T are precisely the conjugates of the eigenvalues of T^{*}.
- The eigenspaces of T and T^{*} corresponding to conjugate eigenvalues are the same.
- The eigenspaces of T are mutually orthogonal to each other.

Diagonalization of Normal Operators

Theorem
Suppose V is a finite dimensional complex inner product space. A linear operator $T: V \rightarrow \mathrm{~V}$ is normal if and only if there is an orthonormal basis of eigenvectors of T.

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the distinct eigenvalues of T and let $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{k}$ be the corresponding eigenspaces.
Two key observations:

- T is diagonalizable if and only if $\mathrm{E}_{1}+\mathrm{E}_{2}+\cdots+\mathrm{E}_{k}=\mathrm{V}$.
- Since the eigenspaces $E_{1}, E_{2}, \ldots, E_{k}$ are mutually orthogonal, T is diagonalizable if and only if it has an orthonormal basis of eigenvectors.
So it is enough to show that $\mathrm{E}_{1}+\mathrm{E}_{2}+\cdots+\mathrm{E}_{k}=\mathrm{V}$.

Diagonalization of Normal Operators

Lemma (A)

Each orthogonal complement $\mathrm{E}_{\mathrm{i}}^{\perp}$ is T-invariant.
Proof of Lemma (A).
First note that $\mathrm{E}_{i}=\mathrm{N}\left(T^{*}-\overline{\lambda_{i}} I\right)$ by part (b) of the first Theorem. Suppose $y \in \mathrm{E}_{i}^{\perp}$. Given any $x \in \mathrm{E}_{i}$, we have

$$
\langle T(y), x\rangle=\left\langle y, T^{*}(x)\right\rangle=\langle y, \bar{\lambda} x\rangle=\lambda\langle y, x\rangle=0 .
$$

Therefore, $T(y) \in \mathrm{E}_{i}^{\perp}$ too.

Diagonalization of Normal Operators

Lemma (A)

Each orthogonal complement E_{i}^{\perp} is T-invariant.
Lemma (B)
The space $\mathrm{W}=\left(\mathrm{E}_{1}+\mathrm{E}_{2}+\cdots+\mathrm{E}_{k}\right)^{\perp}=\mathrm{E}_{1}^{\perp} \cap \mathrm{E}_{2}^{\perp} \cap \cdots \cap \mathrm{E}_{k}^{\perp}$ is T-invariant.

Proof of Lemma (B).
If $x \in \mathrm{~W}$ then $x \in \mathrm{E}_{i}^{\perp}$, so $T(x) \in \mathrm{E}_{i}^{\perp}$ by Lemma (A). Since this is true for $i=1,2, \ldots, k$, we see that $T(x) \in \mathrm{W}$.

Diagonalization of Normal Operators

Lemma (A)

Each orthogonal complement E_{i}^{\perp} is T-invariant.

Lemma (B)
The space $\mathrm{W}=\left(\mathrm{E}_{1}+\mathrm{E}_{2}+\cdots+\mathrm{E}_{k}\right)^{\perp}=\mathrm{E}_{1}^{\perp} \cap \mathrm{E}_{2}^{\perp} \cap \cdots \cap \mathrm{E}_{k}^{\perp}$ is T-invariant.

Lemma (C)
$\mathrm{W}=\{0\}$ and therefore $\mathrm{E}_{1}+\mathrm{E}_{2}+\cdots+\mathrm{E}_{k}=\{0\}^{\perp}=\mathrm{V}$.

Proof of Lemma (C).

The restriction T_{W} has no eigenvectors nor eigenvalues, so the characterstic polynomial of T_{W} must be constant otherwise it would have a root in \mathbb{C}. Since the degree of the characteristic polynomial is $\operatorname{dim}(W)$, it must be that $W=\{0\}$.

Diagonalization of Self-Adjoint Operators

Theorem

Suppose V is a finite dimensional complex inner product space. A linear operator $T: V \rightarrow \mathrm{~V}$ is self-adjoint if and only if all eigenvalues of T are real and there is an orthonormal basis of eigenvectors of T.

Corollary

The eigenvalues of a real symmetric matrix are all real.
Furthermore, every real symmetric matrix is diagonalizable.

Theorem

Suppose V is a finite dimensional real inner product space. A linear operator $T: \mathrm{V} \rightarrow \mathrm{V}$ is self-adjoint if and only if there is an orthonormal basis of eigenvectors of T.

