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Eigenvectors of Normal Operators

Theorem

Suppose V is a finite dimensional inner product space. If
T : V→ V is a normal operator then:

(a) ‖T (x)‖ = ‖T ∗(x)‖ for all x ∈ V.

(b) T (x) = λx iff T ∗(x) = λx .

(c) If T (x1) = λ1x1, T (x2) = λ2x2 and λ1 6= λ2 then 〈x1, x2〉 = 0.

Proof of (a).

On the one hand, ‖T (x)‖2 = 〈T (x),T (x)〉 = 〈x ,T ∗T (x)〉.
On the other hand, ‖T ∗(x)‖2 = 〈T ∗(x),T ∗(x)〉 = 〈x ,TT ∗(x)〉
because T ∗∗ = T .
Since T ∗T = TT ∗, we see that ‖T (x)‖2 = ‖T ∗(x)‖2.



Eigenvectors of Normal Operators

Theorem

Suppose V is a finite dimensional inner product space. If
T : V→ V is a normal operator then:

(a) ‖T (x)‖ = ‖T ∗(x)‖ for all x ∈ V.

(b) T (x) = λx iff T ∗(x) = λx .

(c) If T (x1) = λ1x1, T (x2) = λ2x2 and λ1 6= λ2 then 〈x1, x2〉 = 0.

Proof of (b).

Since T − λI is also normal with adjoint T ∗ − λI , it follows
from (a) that N(T − λI ) = N(T ∗ − λI ).



Eigenvectors of Normal Operators

Theorem

Suppose V is a finite dimensional inner product space. If
T : V→ V is a normal operator then:

(a) ‖T (x)‖ = ‖T ∗(x)‖ for all x ∈ V.

(b) T (x) = λx iff T ∗(x) = λx .

(c) If T (x1) = λ1x1, T (x2) = λ2x2 and λ1 6= λ2 then 〈x1, x2〉 = 0.

Proof of (c).

On the one hand, 〈T (x1), x2〉 = 〈λ1x1, x2〉 = λ1〈x1, x2〉.
On the other hand, 〈x1,T ∗(x2)〉 = 〈x1, λ2x2〉 = λ2〈x1, x2〉 because
of (b).
Since 〈T (x1), x2〉 = 〈x1,T ∗(x2)〉, we see that (λ1−λ2)〈x1, x2〉 = 0.
If λ1 6= λ2 then 〈x1, x2〉 = 0.



Eigenvectors of Normal Operators

Theorem

Suppose V is a finite dimensional inner product space. If
T : V→ V is a normal operator then:

(a) ‖T (x)‖ = ‖T ∗(x)‖ for all x ∈ V.

(b) T (x) = λx iff T ∗(x) = λx .

(c) If T (x1) = λ1x1, T (x2) = λ2x2 and λ1 6= λ2 then 〈x1, x2〉 = 0.

Corollary

For a normal operator T : V→ V on a finite dimensional inner
product space:

I The eigenvalues of T are precisely the conjugates of the
eigenvalues of T ∗.

I The eigenspaces of T and T ∗ corresponding to conjugate
eigenvalues are the same.

I The eigenspaces of T are mutually orthogonal to each other.



Diagonalization of Normal Operators

Theorem

Suppose V is a finite dimensional complex inner product space. A
linear operator T : V→ V is normal if and only if there is an
orthonormal basis of eigenvectors of T .

Let λ1, λ2, . . . , λk be the distinct eigenvalues of T and let
E1,E2, . . . ,Ek be the corresponding eigenspaces.
Two key observations:

I T is diagonalizable if and only if E1 + E2 + · · ·+ Ek = V.

I Since the eigenspaces E1,E2, . . . ,Ek are mutually orthogonal,
T is diagonalizable if and only if it has an orthonormal basis
of eigenvectors.

So it is enough to show that E1 + E2 + · · ·+ Ek = V.



Diagonalization of Normal Operators

Lemma (A)

Each orthogonal complement E⊥i is T -invariant.

Proof of Lemma (A).

First note that Ei = N(T ∗ − λi I ) by part (b) of the first Theorem.
Suppose y ∈ E⊥i . Given any x ∈ Ei , we have

〈T (y), x〉 = 〈y ,T ∗(x)〉 = 〈y , λx〉 = λ〈y , x〉 = 0.

Therefore, T (y) ∈ E⊥i too.

Lemma (B)

The space W = (E1 + E2 + · · ·+ Ek)⊥ = E⊥1 ∩ E⊥2 ∩ · · · ∩ E⊥k is
T -invariant.

Lemma (C)

W = {0} and therefore E1 + E2 + · · ·+ Ek = {0}⊥ = V.



Diagonalization of Normal Operators

Lemma (A)

Each orthogonal complement E⊥i is T -invariant.

Lemma (B)

The space W = (E1 + E2 + · · ·+ Ek)⊥ = E⊥1 ∩ E⊥2 ∩ · · · ∩ E⊥k is
T -invariant.

Proof of Lemma (B).

If x ∈W then x ∈ E⊥i , so T (x) ∈ E⊥i by Lemma (A). Since this is
true for i = 1, 2, . . . , k , we see that T (x) ∈W.

Lemma (C)

W = {0} and therefore E1 + E2 + · · ·+ Ek = {0}⊥ = V.



Diagonalization of Normal Operators

Lemma (A)

Each orthogonal complement E⊥i is T -invariant.

Lemma (B)

The space W = (E1 + E2 + · · ·+ Ek)⊥ = E⊥1 ∩ E⊥2 ∩ · · · ∩ E⊥k is
T -invariant.

Lemma (C)

W = {0} and therefore E1 + E2 + · · ·+ Ek = {0}⊥ = V.

Proof of Lemma (C).

The restriction TW has no eigenvectors nor eigenvalues, so the
characterstic polynomial of TW must be constant otherwise it
would have a root in C. Since the degree of the characteristic
polynomial is dim(W), it must be that W = {0}.



Diagonalization of Self-Adjoint Operators

Theorem

Suppose V is a finite dimensional complex inner product space. A
linear operator T : V→ V is self-adjoint if and only if all
eigenvalues of T are real and there is an orthonormal basis of
eigenvectors of T .

Corollary

The eigenvalues of a real symmetric matrix are all real.
Furthermore, every real symmetric matrix is diagonalizable.

Theorem

Suppose V is a finite dimensional real inner product space. A linear
operator T : V→ V is self-adjoint if and only if there is an
orthonormal basis of eigenvectors of T .


