Slides for May 16

Math 24 - Spring 2014

Dual Transformations

Theorem
If $T: \mathrm{V} \rightarrow \mathrm{W}$ is a linear operator, then $T^{t}: \mathrm{W}^{*} \rightarrow \mathrm{~V}^{*}$ is a linear operator too where

$$
T^{t}(f)(\bullet)=f(T \bullet)
$$

for all $f \in \mathrm{~W}^{*}$.
Given $f, g \in \mathrm{~W}^{*}$, we have

$$
T^{t}(f+g)(\bullet)=(f+g)(T \bullet)=f(T \bullet)+g(T \bullet)=T^{t}(f)(\bullet)+T^{t}(g)(\bullet)
$$

If c is a scalar, we have

$$
T^{t}(c f)(\bullet)=(c f)(T \bullet)=c(f(T \bullet))=c T^{t}(f)(\bullet)
$$

Self-Duality of Inner Product Spaces

Theorem

Let V be a finite dimensional inner product space. There is a conjugate-linear isomorphism $\theta: \mathrm{V}^{*} \rightarrow \mathrm{~V}$ such that

$$
f(\bullet)=\langle\bullet, \theta(f)\rangle
$$

for all $f \in \mathrm{~V}^{*}$.
If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is any orthonormal basis for V, then

$$
\theta(f)=\overline{f\left(v_{1}\right)} v_{1}+\overline{f\left(v_{2}\right)} v_{2}+\cdots+\overline{f\left(v_{n}\right)} v_{n}
$$

The inverse $\theta^{-1}: V \rightarrow \mathrm{~V}^{*}$ is given by

$$
\theta^{-1}(w)(\bullet)=\langle\bullet, w\rangle
$$

for all $w \in \mathrm{~V}$.

Adjoint Transformation

Theorem

Let V be a finite dimensional inner product space. For every linear operator $T: V \rightarrow \mathrm{~V}$ there is a unique linear operator $T^{*}: \mathrm{V} \rightarrow \mathrm{V}$ such that

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle
$$

for all $x, y \in \mathrm{~V}$.
The adjoint $T^{*}: \mathrm{V} \rightarrow \mathrm{V}$ is $T^{*}=\theta T^{t} \theta^{-1}$ because

$$
\langle T x, y\rangle=\theta^{-1}(y)(T x)=T^{t} \theta^{-1}(y)(x)=\left\langle x, \theta T^{t} \theta^{-1}(y)\right\rangle
$$

for all $x, y \in \mathrm{~V}$.
T^{*} is called the adjoint of T

Adjoint Matrix

Recall that the adjoint A^{*} of a matrix $A \in \mathrm{M}_{n \times n}(\mathbb{C})$ is the conjugate transpose of A.
Theorem
Let V be a finite dimensional inner product space with orthonormal basis $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. For every linear operator $T: V \rightarrow \mathrm{~V}$ we have $\left[T^{*}\right]_{\beta}=[T]_{\beta}^{*}$.

Because

$$
\left\langle T^{*} v_{i}, v_{j}\right\rangle=\overline{\left\langle v_{j}, T^{*} v_{i}\right\rangle}=\overline{\left\langle T v_{j}, v_{i}\right\rangle},
$$

the (j, i)-th entry of $\left[T^{*}\right]_{\beta}$ is the conjugate of the (i, j)-th entry of $[T]_{\beta}$.

Normal Operators

Definition

A linear operator $T: \mathrm{V} \rightarrow \mathrm{V}$ is normal if it commutes with its adjoint: $T^{*} T=T T^{*}$.

Theorem
Suppose $T: V \rightarrow \mathrm{~V}$ is a linear operator on a finite dimensional complex inner product space V . Then T is normal if and only if T has an orthonormal basis of eigenvectors.

The 'only if' part will be shown next week...

Self-Adjoint Operators

Definition
A linear operator $T: V \rightarrow \mathrm{~V}$ is self-adjoint if it equals its adjoint: $T=T^{*}$.

Theorem
Suppose $T: V \rightarrow \mathrm{~V}$ is a linear operator on a finite dimensional real inner product space V . Then T is self-adjoint if and only if T has an orthonormal basis of eigenvectors.

The 'only if' part will be shown next week...

Orthogonal Complements

Let V be an inner product space.
The orthogonal complement of a subspace W of V is

$$
\mathrm{W}^{\perp}=\{x \in \mathrm{~V}:\langle x, y\rangle=0 \text { for all } y \in \mathrm{~W}\}
$$

If $\mathrm{W}=\operatorname{span}(S)$ then

$$
\mathrm{W}^{\perp}=\{x \in \mathrm{~V}:\langle x, y\rangle=0 \text { for all } y \in S\}
$$

Properties

- W^{\perp} is a subspace of V .
- $W \cap W^{\perp}=\{0\}$.
- $\left(\mathrm{W}^{\perp}\right)^{\perp}=\mathrm{W}$.
- $\mathrm{V}^{\perp}=\{0\}$ and $\{0\}^{\perp}=\mathrm{V}$.

Orthogonal Projections

Theorem

If V is a finite dimensional inner product space and W is a subspace of V , then $\mathrm{V}=\mathrm{W} \oplus \mathrm{W}^{\perp}$ (direct sum).
In other words, every $x \in \mathrm{~V}$ has a unique decomposition $x=u+v$ where $u \in \mathrm{~W}$ and $v \in \mathrm{~W}^{\perp}$.

If $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ is any orthonormal basis for the subspace W, then the component $u \overline{\text { in }}$ the above decomposition must be

$$
P(x)=\left\langle x, w_{1}\right\rangle w_{1}+\left\langle x, w_{2}\right\rangle w_{2}+\cdots+\left\langle x, w_{k}\right\rangle w_{k} .
$$

The linear transformation $P: \bigvee \rightarrow \mathrm{V}$ so defined is the orthogonal projection onto W.

