Slides for May 7

Math 24 — Spring 2014

Eigenspaces

Definition

Given linear operator $T : V \rightarrow V$ and a scalar λ , we define

$$\Xi_{\lambda} = \mathsf{N}(T - \lambda I).$$

If λ is an eigenvalue of T then E_{λ} is the **eigenspace** of T associated to λ .

- The scalar λ is an eigenvalue of T if and only if $E_{\lambda} \neq \{0\}$.
- The eigenvectors of *T* correponding to the eigenvalue λ are precisely the nonzero elements of E_λ.

Eigenspace Decomposition

Theorem

Suppose $T : V \to V$ is a linear operator on an n-dimensional vector space V and $\lambda_1, \lambda_2, \ldots, \lambda_k$ are <u>all</u> the eigenvalues of T, without repetitions. The following are equivalent:

- (1) T is diagonalizable.
- (2) T has a basis of eigenvectors.
- (3) $\dim(\mathsf{E}_{\lambda_1}) + \dim(\mathsf{E}_{\lambda_2}) + \cdots + \dim(\mathsf{E}_{\lambda_k}) = n.$
- (4) $\mathsf{E}_{\lambda_1} + \mathsf{E}_{\lambda_2} + \cdots + \mathsf{E}_{\lambda_k} = \mathsf{V}.$

Lemma

A vector $x \in V$ has at most one decomposition

$$x = v_1 + v_2 + \cdots + v_k$$

such that $v_1 \in \mathsf{E}_{\lambda_1}, v_2 \in \mathsf{E}_{\lambda_2}, \ldots, v_k \in \mathsf{E}_{\lambda_k}$.

Algebraic and Geometric Multiplicity

Definition

Let $\mathcal{T}: \mathsf{V} \to \mathsf{V}$ be a linear operator on a finite dimensional vector space $\mathsf{V}.$

- The geometric multiplicity of an eigenvalue λ of T is the dimension of E_λ.
- ► The algebraic multiplicity of an eigenvalue λ of T is the multiplicity of the root λ in the characteristic polynomial det(T tI).

Example

If $A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ then the algebraic multiplicity of λ is 2 but the geometric multiplicity of λ is 1.

Algebraic and Geometric Multiplicity

Theorem

Let $T : V \rightarrow V$ be a linear operator over a finite dimensional vector space over the field F. Then T is diagonalizable if and only if both of the following hold:

- The characteristic polynomial of T splits into linear factors over F.
- Every eigenvalue of T has equal geometric and algebraic multiplicities.

Lemma

The geometric multiplicity of an eigenvalue never exceeds its algebraic multiplicity.