Slides for May 5

Math 24 — Spring 2014

Diagonalizability

Definition

A linear operator $T : V \to V$ on a finite dimensional vector space V is **diagonalizable** if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

Example

If $S : \mathbb{R}^2 \to \mathbb{R}^2$ is defined by S(x, y) = (y, x) then, with respect to the ordered basis $\beta = \{(1, 1), (1, -1)\}$ for \mathbb{R}^2 , we have

$$[S]_eta = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$$

because S(1,1) = (1,1) and S(1,-1) = -(1,-1).

Diagonalizability

Definition

A linear operator $T : V \to V$ on a finite dimensional vector space V is **diagonalizable** if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

Example

If $T : \mathbb{C}^2 \to \mathbb{C}^2$ is defined by T(x, y) = (-y, x) then, with respect to the ordered basis $\beta = \{(1, -i), (1, i)\}$ for \mathbb{C}^2 , we have

$$[T]_{\beta} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

because T(1, -i) = i(1, -i) and T(1, i) = -i(1, i).

Eigenvectors and Eigenvalues

Definition

Let $T : V \to V$ be a linear operator.

- An eigenvector for T is a <u>nonzero</u> vector $v \in V$ such that $T(v) = \lambda v$ for some scalar λ .
- ► The scalar \(\lambda\) is then called the eigenvalue associated to the eigenvector \(v\).

Example

So every nonzero $v \in N(T)$ is an eigenvector with eigenvalue 0 since T(v) = 0 = 0v.

Example

Every nonzero vector $v \in V$ is an eigenvector for the identity transformation $I : V \to V$ since I(v) = v = 1v.

Diagonalizability and Eigenvectors

Theorem

If $\beta = \{v_1, v_2, \dots, v_n\}$ is an ordered basis for V and T : V \rightarrow V is a linear operator such that

$$[T]_{\beta} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0\\ 0 & \lambda_2 & & 0\\ \vdots & & \ddots & \vdots\\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

then each v_i is an eigenvector with eigenvalue λ_i .

Corollary

A linear operator $T : V \to V$ on a finite dimensional vector space V is diagonalizable if and only if there is a basis for V that consists of eigenvectors for T.

Finding Eigenvectors given Eigenvalues

Theorem

Let $T : V \rightarrow V$ be a linear operator. Given a scalar λ , the eigenvectors with eigenvalue λ are precisely the <u>nonzero</u> vectors of the null space $N(T - \lambda I)$.

Given an eigenvalue λ we can find all corresponding eigenvectors

Corollary

Let $T : V \to V$ be a linear operator and let λ be a scalar. There exists an eigenvector with eigenvalue λ if and only if $T - \lambda I$ is not invertible.

How can we find <u>all</u> scalars λ such that $T - \lambda I$ is not invertible?

The Characteristic Polynomial of a Square Matrix

Theorem

If A is a $n \times n$ matrix over the field F, then

$$\det(A - tI_n) = (-1)^n t^n + c_{n-1} t^{n-1} + \dots + c_1 t + c_0$$

is a polynomial of degree n in the variable t with coefficients in F.

 $det(A - tI_n)$ is the characteristic polynomial of A

Corollary

Let $T : V \to V$ be a linear operator and let α be <u>any</u> ordered basis for the finite dimensional vector space V. The eigenvalues of T are the roots of the characteristic polynomial of the matrix $A = [T]_{\alpha}$.

The Characteristic Polynomial of a Linear Operator

Theorem

Let $T : V \to V$ be a linear operator and let α and β be any two ordered bases for the finite dimensional vector space V. Then the matrices $A = [T]_{\alpha}$ and $B = [T]_{\beta}$ have the same characteristic polynomial.

Proof.

Let Q be the change of coordinate matrix from α -coordinates to β -coordinates. Then $A = Q^{-1}BQ$ and $tI_n = Q^{-1}(tI_n)Q$, so

$$A - tI_n = Q^{-1}BQ - Q^{-1}(tI_n)Q = Q^{-1}(B - tI_n)Q$$

and hence

$$\det(A - tI_n) = \det(Q^{-1})\det(B - tI_n)\det(Q) = \det(B - tI_n)$$

since $\det(Q^{-1}) = 1/\det(Q)$.

Examples Revisited

$$S : \mathbb{R}^2 \to \mathbb{R}^2$$

$$S(x, y) = (y, x)$$

$$[S]_{std} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$det(S - tI) = t^2 - 1$$
Eigenvalues: -1, 1
Eigenbasis: {(1, -1), (1, 1)}
$$[S]_{eig} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$T : \mathbb{C}^2 \to \mathbb{C}^2$$
$$T(x, y) = (-y, x)$$
$$[T]_{std} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$det(T - tI) = t^2 + 1$$
Eigenvalues: *i*, -*i*
Eigenbasis: {(1, -*i*), (1, *i*)}
$$[T]_{eig} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$