Slides for May 5

Math 24 - Spring 2014

Diagonalizability

Definition

A linear operator $T: V \rightarrow \mathrm{~V}$ on a finite dimensional vector space V is diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

Example

If $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by $S(x, y)=(y, x)$ then, with respect to the ordered basis $\beta=\{(1,1),(1,-1)\}$ for \mathbb{R}^{2}, we have

$$
[S]_{\beta}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

because $S(1,1)=(1,1)$ and $S(1,-1)=-(1,-1)$.

Diagonalizability

Definition

A linear operator $T: V \rightarrow \mathrm{~V}$ on a finite dimensional vector space V is diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

Example

If $T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is defined by $T(x, y)=(-y, x)$ then, with respect to the ordered basis $\beta=\{(1,-i),(1, i)\}$ for \mathbb{C}^{2}, we have

$$
[T]_{\beta}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)
$$

because $T(1,-i)=i(1,-i)$ and $T(1, i)=-i(1, i)$.

Eigenvectors and Eigenvalues

Definition

Let $T: V \rightarrow V$ be a linear operator.

- An eigenvector for T is a nonzero vector $v \in \mathrm{~V}$ such that $T(v)=\lambda v$ for some scalar λ.
- The scalar λ is then called the eigenvalue associated to the eigenvector v.

Example

So every nonzero $v \in N(T)$ is an eigenvector with eigenvalue 0 since $T(v)=0=0 v$.

Example

Every nonzero vector $v \in \mathrm{~V}$ is an eigenvector for the identity transformation $I: \mathrm{V} \rightarrow \mathrm{V}$ since $I(v)=v=1 v$.

Diagonalizability and Eigenvectors

Theorem

If $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an ordered basis for V and $T: \mathrm{V} \rightarrow \mathrm{V}$ is a linear operator such that

$$
[T]_{\beta}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

then each v_{i} is an eigenvector with eigenvalue λ_{i}.

Corollary

A linear operator $T: V \rightarrow \mathrm{~V}$ on a finite dimensional vector space V is diagonalizable if and only if there is a basis for V that consists of eigenvectors for T.

Finding Eigenvectors given Eigenvalues

Theorem
Let $T: V \rightarrow \mathrm{~V}$ be a linear operator. Given a scalar λ, the eigenvectors with eigenvalue λ are precisely the nonzero vectors of the null space $\mathrm{N}(T-\lambda I)$.

Given an eigenvalue λ we can find all corresponding eigenvectors

Corollary
Let $T: V \rightarrow \mathrm{~V}$ be a linear operator and let λ be a scalar. There exists an eigenvector with eigenvalue λ if and only if $T-\lambda I$ is not invertible.

How can we find all scalars λ such that $T-\lambda /$ is not invertible?

The Characteristic Polynomial of a Square Matrix

Theorem
If A is a $n \times n$ matrix over the field F, then

$$
\operatorname{det}\left(A-t I_{n}\right)=(-1)^{n} t^{n}+c_{n-1} t^{n-1}+\cdots+c_{1} t+c_{0}
$$

is a polynomial of degree n in the variable t with coefficients in F.

$$
\operatorname{det}\left(A-t l_{n}\right) \text { is the characteristic polynomial of } A
$$

Corollary

Let $T: V \rightarrow \mathrm{~V}$ be a linear operator and let α be any ordered basis for the finite dimensional vector space V . The eigenvalues of T are the roots of the characteristic polynomial of the matrix $A=[T]_{\alpha}$.

The Characteristic Polynomial of a Linear Operator

Theorem

Let $T: \mathrm{V} \rightarrow \mathrm{V}$ be a linear operator and let α and β be any two ordered bases for the finite dimensional vector space V . Then the matrices $A=[T]_{\alpha}$ and $B=[T]_{\beta}$ have the same characteristic polynomial.

Proof.

Let Q be the change of coordinate matrix from α-coordinates to β-coordinates. Then $A=Q^{-1} B Q$ and $t I_{n}=Q^{-1}\left(t I_{n}\right) Q$, so

$$
A-t l_{n}=Q^{-1} B Q-Q^{-1}\left(t l_{n}\right) Q=Q^{-1}\left(B-t l_{n}\right) Q
$$

and hence

$$
\operatorname{det}\left(A-t I_{n}\right)=\operatorname{det}\left(Q^{-1}\right) \operatorname{det}\left(B-t I_{n}\right) \operatorname{det}(Q)=\operatorname{det}\left(B-t I_{n}\right)
$$

since $\operatorname{det}\left(Q^{-1}\right)=1 / \operatorname{det}(Q)$.

Examples Revisited

$$
\begin{aligned}
& S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& S(x, y)=(y, x) \\
& {[S]_{\text {std }}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)} \\
& \operatorname{det}(S-t l)=t^{2}-1
\end{aligned}
$$

Eigenvalues: $-1,1$
Eigenbasis: $\{(1,-1),(1,1)\}$
$[S]_{\text {eig }}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$

$$
\begin{aligned}
& T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \\
& T(x, y)=(-y, x) \\
& {[T]_{\text {std }}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)} \\
& \operatorname{det}(T-t /)=t^{2}+1
\end{aligned}
$$

Eigenvalues: $i,-i$
Eigenbasis: $\{(1,-i),(1, i)\}$
$[T]_{\mathrm{eig}}=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$

