Slides for April 25

Math 24 - Spring 2014

Permutation Matrices

Definition

A permutation matrix is a square matrix with exactly one 1 in each row and in each column, and all other entries are 0.

$$
\begin{array}{lll}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) & \left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) & \left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
\end{array}
$$

If P is a permutation matrix and A any matrix with matching size, then $P A$ has the same rows as A but in a different order.

The inverse of P is the transpose P^{t}

LU-Decomposition

Theorem

For every invertible square matrix A, there are

- a permutation matrix P,
- an upper triangular matrix U with no zeros along the diagonal, and
- a lower triangular matrix L with all 1 's along the diagonal, such that $A=P L U$.

$$
\begin{array}{r}
\left(\begin{array}{ccc}
-1 & -1 & -5 \\
1 & 7 & -2 \\
1 & -5 & 15
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right)\left(\begin{array}{ccc}
-1 & -1 & -5 \\
0 & 6 & -7 \\
0 & 0 & 3
\end{array}\right) \\
\text { matlab: }[\mathrm{L} U \mathrm{P}]=\operatorname{lu}(\mathrm{A})
\end{array}
$$

LU-Usage

$$
A=\left(\begin{array}{ccc}
-1 & -1 & -5 \\
1 & 7 & -2 \\
1 & -5 & 15
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right)\left(\begin{array}{ccc}
-1 & -1 & -5 \\
0 & 6 & -7 \\
0 & 0 & 3
\end{array}\right)=L U
$$

To solve $A x=b=(-4,9,2)$:

1. Solve $L y=(-4,9,2)$ by forward substitution:

$$
y_{1}=-4, \quad y_{2}=9+y_{1}=5, \quad y_{3}=2+y_{1}+y_{2}=3 .
$$

2. Solve $U x=y=(-4,5,3)$ by backward substitiution:

$$
\begin{aligned}
& x_{3}=3 / 3=1 \\
& x_{2}=\left(5+7 x_{3}\right) / 6=2 \\
& x_{1}=\left(-4+x_{2}+5 x_{3}\right) /(-1)=-3 \\
& \text { matlab: } x=U \backslash(L \backslash b)
\end{aligned}
$$

LU-Usage

The main purpose of the $L U$-decomposition is to avoid computing inverses! But if you must compute an inverse, the LU-decomposition may be helpful...

The matrix A and its inverse A^{-1} are related by

$$
A x=y \quad \text { if and only if } \quad A^{-1} y=x
$$

So the columns of the inverse

$$
x_{1}=A^{-1} e_{1}, \quad x_{2}=A^{-1} e_{2}, \quad \ldots, \quad x_{n}=A^{-1} e_{n}
$$

can be computed by solving

$$
A x_{1}=e_{1}, \quad A x_{2}=e_{2}, \quad \ldots, \quad A x_{n}=e_{n} .
$$

These are easier to solve given a $L U$-decomposition $A=L U \ldots$

LU-Usage

$A=\left(\begin{array}{ccc}-1 & -1 & -5 \\ 1 & 7 & -2 \\ 1 & -5 & 15\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 1\end{array}\right)\left(\begin{array}{ccc}-1 & -1 & -5 \\ 0 & 6 & -7 \\ 0 & 0 & 3\end{array}\right)=L U$

- $L(0,0,1)=(0,0,1)$ and $U(-37 / 18,7 / 18,1 / 3)=(0,0,1)$.
- $L(0,1,1)=(0,1,0)$ and $U(-20 / 9,5 / 9,1 / 3)=(0,1,1)$.
- $L(1,1,2)=(1,0,0)$ and $U(-95 / 18,17 / 18,2 / 3)=(0,1,1)$.

$$
A^{-1}=\frac{1}{18}\left(\begin{array}{ccc}
-95 & -40 & -37 \\
17 & 10 & 7 \\
12 & 6 & 6
\end{array}\right)
$$

LU-Computation

- Reduce $A \rightsquigarrow U$ to echelon form using only lower triangular type 3 elementary matrices E on the left.
- Update $I \rightsquigarrow L$ by multiplying on the right by E^{-1} at each step.

$$
\begin{aligned}
(A \mid I)= & \left(\begin{array}{rrr|rrr}
-1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & -2 & -4 & 0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{rrr|rrr}
-1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & -2 & -5 & -1 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{rrr|rrr}
-1 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & -5 & -1 & -2 & 1
\end{array}\right)=(U \mid L)
\end{aligned}
$$

LU-Computation

If you get stuck, reorder the rows using a permutation matrix...

$$
\begin{aligned}
(A \mid I)= & \left(\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 & 1 & 0 \\
1 & 1 & -1 & 0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 & 1 & 0 \\
0 & 1 & -1 & 1 & 0 & 1
\end{array}\right) \text { Oops! }
\end{aligned}
$$

Swap the last two rows using $P=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$.

LU-Computation

If you get stuck, reorder the rows using a permutation matrix...

$$
\begin{aligned}
(P A \mid I)= & \left(\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & -1 & 0 & 1 & 0 \\
0 & 0 & 2 & 0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 1 & 0 \\
0 & 0 & 2 & 0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 1 & 0 \\
0 & 0 & 2 & 0 & 0 & 1
\end{array}\right)=(U \mid L)
\end{aligned}
$$

Then $P A=L U$ or, equivalently, $A=P^{t} L U$.

