Slides for April 16

Math 24 - Spring 2014

Inverse Transformations

Suppose $T: \mathrm{V} \rightarrow \mathrm{W}$ and $S: \mathrm{W} \rightarrow \mathrm{V}$ are linear transformations.

- S is a left inverse of T if $S T=l_{V}$.
- S is a right inverse of T if $T S=l_{\mathrm{W}}$.

Theorem
If the linear transformation $T: V \rightarrow \mathrm{~W}$ has both a left inverse and a right inverse, then they are the same.

Proof.
If $S T=I_{V}$ and $T S^{\prime}=I_{W}$ then

$$
S=S I_{W}=S\left(T S^{\prime}\right)=(S T) S^{\prime}=I_{V} S^{\prime}=S^{\prime}
$$

Inverse Transformations

Suppose $T: \mathrm{V} \rightarrow \mathrm{W}$ and $S: \mathrm{W} \rightarrow \mathrm{V}$ are linear transformations.

- S is a left inverse of T if $S T=l_{V}$.
- S is a right inverse of T if $T S=l_{\mathrm{w}}$.

Theorem

If the linear transformation $T: \mathrm{V} \rightarrow \mathrm{W}$ has both a left inverse and a right inverse, then they are the same.

Definition

When it exists, the inverse of a linear transformation $T: V \rightarrow \mathrm{~W}$ is the unique linear transformation $T^{-1}: \mathrm{W} \rightarrow \mathrm{V}$ such that both $T^{-1} T=l_{V}$ and $T T^{-1}=l_{\mathrm{W}}$.

One-to-One, Onto, and Inverses

Theorem

If $T: \mathrm{V} \rightarrow \mathrm{W}$ and $S: \mathrm{W} \rightarrow \mathrm{V}$ are linear transformations such that

$$
S T=l_{V}
$$

then
(a) T is one-to-one, and
(b) S is onto.

Proof.

(a) If $u, v \in \mathrm{~V}$ are such that $T(u)=T(v)$ then $u=S(T(u))=S(T(v))=v$.
(b) Given any $v \in \mathrm{~V}$, the vector $w=T(v)$ is such that $S(w)=S(T(v))=v$.

One-to-One, Onto, and Inverses

Theorem
If $T: \mathrm{V} \rightarrow \mathrm{W}$ and $\mathrm{S}: \mathrm{W} \rightarrow \mathrm{V}$ are linear transformations such that

$$
S T=I V
$$

then
(a) T is one-to-one, and
(b) S is onto.

Corollary
Let $T: V \rightarrow \mathrm{~W}$ be a linear transformation.
(a) If T has a left inverse then T is one-to-one.
(b) If T has a right inverse then T is onto.

One-to-One Transformations

Theorem

Suppose V and W are finite dimensional vector spaces. For any linear transformation $T: \mathrm{V} \rightarrow \mathrm{W}$, the following are equivalent:

1. T is one-to-one
2. $\operatorname{nullity}(T)=0$
3. $\operatorname{rank}(T)=\operatorname{dim}(\mathrm{V})$
4. T has a left inverse

We already know that 1, 2, 3 are equivalent.
We saw that 4 implies 1 .
So it suffices to prove that 1 implies 4.

One-to-One Transformations

Proof of $1 \rightarrow 4$.

Suppose $T: V \rightarrow \mathrm{~W}$ is one-to-one. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis for V. By Exercise 14(a) of $\S 2.1,\left\{y_{1}, \ldots, y_{n}\right\}$ is linearly independent where $y_{1}=T\left(x_{1}\right), \ldots, y_{n}=T\left(x_{n}\right)$; extend this set to a basis $\left\{y_{1}, \ldots, y_{m}\right\}$ for W.
By Theorem 2.6, there is a linear transformation $S: \mathrm{W} \rightarrow \mathrm{V}$ such that $S\left(y_{1}\right)=x_{1}, \ldots, S\left(y_{n}\right)=x_{n}$ and $S\left(y_{i}\right)=0$ for $n<i \leq m$. If $x=a_{1} x_{1}+\cdots+a_{n} x_{n}$ is any vector in V, then

$$
\begin{aligned}
S(T(v)) & =S T\left(a_{1} x_{1}+\cdots+a_{n} x_{n}\right) \\
& =a_{1} S T\left(x_{1}\right)+\cdots+a_{n} S T\left(x_{n}\right) \\
& =a_{1} S\left(y_{1}\right)+\cdots+a_{n} S\left(y_{n}\right) \\
& =a_{1} x_{1}+\cdots+a_{n} x_{n}=x .
\end{aligned}
$$

Therefore $S T=l_{V}$.

Onto Transformations

Theorem

Suppose V and W are finite dimensional vector spaces. For any linear transformation $T: V \rightarrow \mathrm{~W}$, the following are equivalent:

1. T is onto
2. $\operatorname{rank}(T)=\operatorname{dim}(\mathrm{W})$
3. $\operatorname{nullity}(T)=\operatorname{dim}(\mathrm{V})-\operatorname{dim}(\mathrm{W})$
4. T has a right inverse

We already know that 1, 2, 3 are equivalent.
We saw that 4 implies 1 .
So it suffices to prove that 1 implies 4.

Onto Transformations

Proof of $1 \rightarrow 4$.
Suppose $T: V \rightarrow W$ is onto. Let $\left\{y_{1}, \ldots, y_{n}\right\}$ be a basis for W. Since T is onto, we can pick matching $\left\{x_{1}, \ldots, x_{n}\right\}$ in V such that

$$
T\left(x_{1}\right)=y_{1}, \ldots, T\left(x_{n}\right)=y_{n} .
$$

By Theorem 2.6, there is a linear transformation $S: \mathrm{W} \rightarrow \mathrm{V}$ such that $S\left(y_{1}\right)=x_{1}, \ldots, S\left(y_{n}\right)=x_{n}$.
If $y=a_{1} y_{1}+\cdots+a_{n} y_{n}$ is any vector in W, then

$$
\begin{aligned}
T(S(y)) & =T S\left(a_{1} y_{1}+\cdots+a_{n} y_{n}\right) \\
& =a_{1} T S\left(y_{1}\right)+\cdots+a_{n} T S\left(y_{n}\right) \\
& =a_{1} T\left(x_{1}\right)+\cdots+a_{n} T\left(x_{n}\right) \\
& =a_{1} y_{1}+\cdots+a_{n} y_{n}=y .
\end{aligned}
$$

Therefore $T S=l_{w}$.

Isomorphisms

Theorem
Suppose V and W are finite dimensional vector spaces of equal dimension n with ordered bases α and β, respectively. For any linear transformation $T: V \rightarrow \mathrm{~W}$, the following are equivalent:

- T is one-to-one and onto
- T is one-to-one
- T is onto
- $\operatorname{nullity}(T)=0$
- The columns of $[T]_{\alpha}^{\beta}$ are independent
- T is invertible
- T has a left inverse
- T has a right inverse
- $\operatorname{rank}(T)=n$
- The columns of $[T]_{\alpha}^{\beta}$ generate F^{n}

