Slides for April 14

Math 24 — Spring 2014

The Space $\mathcal{L}(V, W)$

The collection $\mathcal{L}(V,W)$ of all linear transformations from V to W is a vector space where:

• The sum $S + T : V \rightarrow W$ is defined by

$$(S+T)(x) = S(x) + T(x)$$

for all $x \in V$.

• The scalar product $aT : V \rightarrow W$ is defined by

$$(aT)(x) = aT(x)$$

for all $x \in V$.

• The zero transformation $T_0: V \to W$ is defined by

$$T_0(x)=0$$

for all $x \in V$.

Algebra of Linear Transformations

If $S \in \mathcal{L}(V, W)$, $T, T' \in \mathcal{L}(W, X)$, $U \in \mathcal{L}(X, Y)$ then: Identity $Sh_{\ell} = S$ and $h_{\mathcal{W}}S = S$ Associativity (UT)S = U(TS)Distributivity (T+T')S = TS + T'SU(T + T') = UT + UT'Scalars Commute (cT)S = c(TS) = T(cS)

From $M_{m \times n}(F)$ to $\mathcal{L}(F^n, F^m)$

Let α and β be the standard ordered bases for F^n and F^m , respectively.

If A is a $m \times n$ matrix then the function $L_A : F^n \to F^m$ defined by

$$L_A(x) = Ax$$

for $x \in F^n$ is a linear transformation such that $A = [L_A]^{\beta}_{\alpha}$.

The correspondence

$$A \in M_{m \times n}(F) \mapsto L_A \in \mathcal{L}(F^n, F^m)$$

is a linear transformation:

$$L_{A+B} = L_A + L_B, \quad L_{cA} = cL_A, \quad L_O = T_0.$$

From $\mathcal{L}(F^n, F^m)$ to $M_{m \times n}(F)$

Let α and β be the standard ordered bases for F^n and F^m , respectively.

If $T:F^n\to F^m$ is a linear transformation then $[T]^\beta_\alpha$ is a $m\times n$ matrix such that

$$[T(x)]_{\beta} = [T]_{\alpha}^{\beta} x$$

for every $x \in F^n$.

The correspondence

$$T \in \mathcal{L}(F^n, F^m) \mapsto [T]^{\beta}_{\alpha} \in \mathsf{M}_{m \times n}(F)$$

is a linear transformation:

$$[S+T]^{\beta}_{\alpha} = [S]^{\beta}_{\alpha} + [T]^{\beta}_{\alpha}, \quad [aT]^{\beta}_{\alpha} = a[T]^{\beta}_{\alpha}, \quad [T_0]^{\beta}_{\alpha} = O.$$

Algebra of Matrices

If $A \in M_{p \times q}(F)$, $B, B' \in M_{q \times r}(F)$, $C \in M_{r \times s}(F)$ then: Identity $AI_q = A$ and $I_p A = A$ Associativity (AB)C = A(BC)Distributivity A(B+B') = AB + AB'(B+B')C = BC + B'CScalars Commute (cA)B = c(AB) = A(cB)