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Dimension Theorem

I The nullity of a linear transformation T : V→W is the
dimension of the null space N(T ) = {v ∈ V : T (v) = 0}.

I The rank of a linear transformation T : V→W is the
dimension of the range space R(T ) = {T (v) ∈W : v ∈ V}.

Dimension Theorem

If T : V→W is a linear transformation and V is finite dimensional,
then

nullity(T ) + rank(T ) = dim(V).

The Dimension Theorem is also known as the Rank–Nullity
Theorem.



Dimension Theorem

Start with a basis {v1, . . . , vk} of N(T ) and extend it to a basis
{v1, . . . , vk , vk+1, . . . , vn} for all of V.

Claim

{T (vk+1), . . . ,T (vn)} is a basis for R(T ).

Proof of Claim

We know that {T (v1), . . . ,T (vn)} generates R(T ).
Since T (v1) = T (v2) = · · · = T (vk) = 0, the subset
{T (vk+1), . . . ,T (vn)} already generates R(T ).
It remains to see that {T (vk+1), . . . ,T (vn)} is linearly
independent. . .



Dimension Theorem

Start with a basis {v1, . . . , vk} of N(T ) and extend it to a basis
{v1, . . . , vk , vk+1, . . . , vn} for all of V.

Claim

{T (vk+1), . . . ,T (vn)} is a basis for R(T ).

Suppose, ak+1, . . . , an are scalars such that

ak+1T (vk+1) + · · ·+ anT (vn) = 0.

Because T is linear, we see that

T (ak+1vk+1 + · · ·+ anvn) = 0.

Therefore ak+1vk+1 + · · ·+ anvn is in the null space of T .



Dimension Theorem
Start with a basis {v1, . . . , vk} of N(T ) and extend it to a basis
{v1, . . . , vk , vk+1, . . . , vn} for all of V.

Claim

{T (vk+1), . . . ,T (vn)} is a basis for R(T ).

Since {v1, . . . , vk} is a basis for N(T ), there are scalars b1, . . . , bk

such that

ak+1vk+1 + · · ·+ anvn = b1v1 + · · ·+ bkvk ,

or equivalently

−b1v1 − · · · − bkvk + ak+1vk+1 + · · ·+ anvn = 0.

Since {v1, . . . , vn} is linearly independent, we conclude that

−b1 = · · · = −bk = ak+1 = · · · = an = 0.



Dimension Theorem

Start with a basis {v1, . . . , vk} of N(T ) and extend it to a basis
{v1, . . . , vk , vk+1, . . . , vn} for all of V.

Claim

{T (vk+1), . . . ,T (vn)} is a basis for R(T ).

It follows that

rank(T ) = n − k = dim(V )− nullity(T ),

or equivalently that

nullity(T ) + rank(T ) = dim(V).



One-to-One Linear Transformations

A linear transformation is one-to-one if

T (x) = T (y) implies x = y .

Theorem

A linear transformation T : V→W is one-to-one if and only if
N(T ) = {0}.

(⇒) If T : V→W is one-to-one, then N(T ) can only have one
element, which must be the zero vector.



One-to-One Linear Transformations

A linear transformation is one-to-one if

T (x) = T (y) implies x = y .

Theorem

A linear transformation T : V→W is one-to-one if and only if
N(T ) = {0}.

(⇐) Suppose N(T ) = {0}. If T (x) = T (y), then

T (x − y) = T (x)− T (y) = 0.

Therefore x − y ∈ N(T ). Since N(T ) = {0} this means x − y = 0,
or x = y .



One-to-One Linear Transformations

A linear transformation is one-to-one if

T (x) = T (y) implies x = y .

Theorem

A linear transformation T : V→W is one-to-one if and only if
N(T ) = {0}.

Corollary

Suppose V and W are finite dimensional vector spaces. For any
linear transformation T : V→W, the following are equivalent:

1. T is one-to-one

2. nullity(T ) = 0

3. rank(T ) = dim(V)



Onto Linear Transformations

A linear transformation T : V→W is onto if for every w ∈W
there is a v ∈ V such that w = T (v).

Theorem

A linear transformation T : V→W is onto if and only if
R(T ) = W.

Corollary

Suppose V and W are finite dimensional vector spaces. For any
linear transformation T : V→W, the following are equivalent:

1. T is onto

2. rank(T ) = dim(W)

3. nullity(T ) = dim(V)− dim(W)



One-to-One and Onto Linear Transformations

Theorem

Suppose V and W are finite dimensional vector spaces of equal
dimension n. For any linear transformation T : V→W, the
following are equivalent:

1. T is one-to-one and onto

2. T is one-to-one

3. T is onto

4. nullity(T ) = 0

5. rank(T ) = n


