Slides for April 9

Math 24 - Spring 2014

Dimension Theorem

- The nullity of a linear transformation $T: \mathrm{V} \rightarrow \mathrm{W}$ is the dimension of the null space $\mathrm{N}(T)=\{v \in \mathrm{~V}: T(v)=0\}$.
- The rank of a linear transformation $T: V \rightarrow \mathrm{~W}$ is the dimension of the range space $\mathrm{R}(T)=\{T(v) \in \mathrm{W}: v \in \mathrm{~V}\}$.

Dimension Theorem

If $T: \mathrm{V} \rightarrow \mathrm{W}$ is a linear transformation and V is finite dimensional, then

$$
\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim}(\mathrm{V})
$$

The Dimension Theorem is also known as the Rank-Nullity Theorem.

Dimension Theorem

Start with a basis $\left\{v_{1}, \ldots, v_{k}\right\}$ of $N(T)$ and extend it to a basis $\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ for all of V .

Claim
$\left\{T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for $\mathrm{R}(T)$.
Proof of Claim
We know that $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ generates $\mathrm{R}(T)$.
Since $T\left(v_{1}\right)=T\left(v_{2}\right)=\cdots=T\left(v_{k}\right)=0$, the subset $\left\{T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right)\right\}$ already generates $\mathrm{R}(T)$.
It remains to see that $\left\{T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right)\right\}$ is linearly independent...

Dimension Theorem

Start with a basis $\left\{v_{1}, \ldots, v_{k}\right\}$ of $N(T)$ and extend it to a basis $\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ for all of V.

Claim
$\left\{T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for $\mathrm{R}(T)$.

Suppose, a_{k+1}, \ldots, a_{n} are scalars such that

$$
a_{k+1} T\left(v_{k+1}\right)+\cdots+a_{n} T\left(v_{n}\right)=0
$$

Because T is linear, we see that

$$
T\left(a_{k+1} v_{k+1}+\cdots+a_{n} v_{n}\right)=0
$$

Therefore $a_{k+1} v_{k+1}+\cdots+a_{n} v_{n}$ is in the null space of T.

Dimension Theorem

Start with a basis $\left\{v_{1}, \ldots, v_{k}\right\}$ of $N(T)$ and extend it to a basis $\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ for all of V .

Claim
$\left\{T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for $\mathrm{R}(T)$.

Since $\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis for $N(T)$, there are scalars b_{1}, \ldots, b_{k} such that

$$
a_{k+1} v_{k+1}+\cdots+a_{n} v_{n}=b_{1} v_{1}+\cdots+b_{k} v_{k}
$$

or equivalently

$$
-b_{1} v_{1}-\cdots-b_{k} v_{k}+a_{k+1} v_{k+1}+\cdots+a_{n} v_{n}=0
$$

Since $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent, we conclude that

$$
-b_{1}=\cdots=-b_{k}=a_{k+1}=\cdots=a_{n}=0
$$

Dimension Theorem

Start with a basis $\left\{v_{1}, \ldots, v_{k}\right\}$ of $N(T)$ and extend it to a basis $\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ for all of V .

Claim
$\left\{T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for $\mathrm{R}(T)$.
It follows that

$$
\operatorname{rank}(T)=n-k=\operatorname{dim}(V)-\operatorname{nullity}(T),
$$

or equivalently that

$$
\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim}(\mathrm{V})
$$

One-to-One Linear Transformations

A linear transformation is one-to-one if

$$
T(x)=T(y) \quad \text { implies } \quad x=y .
$$

Theorem
A linear transformation $T: V \rightarrow \mathrm{~W}$ is one-to-one if and only if $\mathrm{N}(T)=\{0\}$.
(\Rightarrow) If $T: \mathrm{V} \rightarrow \mathrm{W}$ is one-to-one, then $\mathrm{N}(T)$ can only have one element, which must be the zero vector.

One-to-One Linear Transformations

A linear transformation is one-to-one if

$$
T(x)=T(y) \quad \text { implies } \quad x=y
$$

Theorem
A linear transformation $T: V \rightarrow \mathrm{~W}$ is one-to-one if and only if $\mathrm{N}(T)=\{0\}$.
(\Leftarrow) Suppose $N(T)=\{0\}$. If $T(x)=T(y)$, then

$$
T(x-y)=T(x)-T(y)=0
$$

Therefore $x-y \in N(T)$. Since $N(T)=\{0\}$ this means $x-y=0$, or $x=y$.

One-to-One Linear Transformations

A linear transformation is one-to-one if

$$
T(x)=T(y) \quad \text { implies } \quad x=y .
$$

Theorem
A linear transformation $T: V \rightarrow \mathrm{~W}$ is one-to-one if and only if $N(T)=\{0\}$.

Corollary
Suppose V and W are finite dimensional vector spaces. For any linear transformation $T: \mathrm{V} \rightarrow \mathrm{W}$, the following are equivalent:

1. T is one-to-one
2. $\operatorname{nullity}(T)=0$
3. $\operatorname{rank}(T)=\operatorname{dim}(V)$

Onto Linear Transformations

A linear transformation $T: \mathrm{V} \rightarrow \mathrm{W}$ is onto if for every $w \in \mathrm{~W}$ there is a $v \in \mathrm{~V}$ such that $w=T(v)$.

Theorem
A linear transformation $T: \mathrm{V} \rightarrow \mathrm{W}$ is onto if and only if $\mathrm{R}(T)=\mathrm{W}$.

Corollary

Suppose V and W are finite dimensional vector spaces. For any linear transformation $T: \mathrm{V} \rightarrow \mathrm{W}$, the following are equivalent:

1. T is onto
2. $\operatorname{rank}(T)=\operatorname{dim}(W)$
3. $\operatorname{nullity}(T)=\operatorname{dim}(\mathrm{V})-\operatorname{dim}(\mathrm{W})$

One-to-One and Onto Linear Transformations

Theorem
Suppose V and W are finite dimensional vector spaces of equal dimension n. For any linear transformation $T: V \rightarrow \mathrm{~W}$, the following are equivalent:

1. T is one-to-one and onto
2. T is one-to-one
3. T is onto
4. $\operatorname{nullity}(T)=0$
5. $\operatorname{rank}(T)=n$
