Slides for April 9

Math 24 — Spring 2014

- ► The nullity of a linear transformation T : V → W is the dimension of the null space N(T) = {v ∈ V : T(v) = 0}.
- ► The rank of a linear transformation T : V → W is the dimension of the range space R(T) = {T(v) ∈ W : v ∈ V}.

Dimension Theorem

If $\mathcal{T}: \mathsf{V} \to \mathsf{W}$ is a linear transformation and V is finite dimensional, then

$$\operatorname{nullity}(T) + \operatorname{rank}(T) = \operatorname{dim}(V).$$

The Dimension Theorem is also known as the Rank–Nullity Theorem.

Start with a basis $\{v_1, \ldots, v_k\}$ of N(T) and extend it to a basis $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ for all of V. Claim $\{T(v_{k+1}), \ldots, T(v_n)\}$ is a basis for R(T).

Proof of Claim

We know that $\{T(v_1), \ldots, T(v_n)\}$ generates R(T). Since $T(v_1) = T(v_2) = \cdots = T(v_k) = 0$, the subset $\{T(v_{k+1}), \ldots, T(v_n)\}$ already generates R(T). It remains to see that $\{T(v_{k+1}), \ldots, T(v_n)\}$ is linearly independent...

Start with a basis $\{v_1, \ldots, v_k\}$ of N(T) and extend it to a basis $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ for all of V.

Claim $\{T(v_{k+1}), \ldots, T(v_n)\}$ is a basis for R(T).

Suppose, a_{k+1}, \ldots, a_n are scalars such that

$$a_{k+1}T(v_{k+1})+\cdots+a_nT(v_n)=0.$$

Because T is linear, we see that

$$T(a_{k+1}v_{k+1}+\cdots+a_nv_n)=0.$$

Therefore $a_{k+1}v_{k+1} + \cdots + a_nv_n$ is in the null space of T.

Start with a basis $\{v_1, \ldots, v_k\}$ of N(*T*) and extend it to a basis $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ for all of V.

Claim

 $\{T(v_{k+1}), \ldots, T(v_n)\}$ is a basis for R(T).

Since $\{v_1, \ldots, v_k\}$ is a basis for N(T), there are scalars b_1, \ldots, b_k such that

$$a_{k+1}v_{k+1}+\cdots+a_nv_n=b_1v_1+\cdots+b_kv_k,$$

or equivalently

$$-b_1v_1-\cdots-b_kv_k+a_{k+1}v_{k+1}+\cdots+a_nv_n=0.$$

Since $\{v_1, \ldots, v_n\}$ is linearly independent, we conclude that

$$-b_1=\cdots=-b_k=a_{k+1}=\cdots=a_n=0.$$

Start with a basis $\{v_1, \ldots, v_k\}$ of N(*T*) and extend it to a basis $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ for all of V. Claim $\{T(v_{k+1}), \ldots, T(v_n)\}$ is a basis for R(*T*).

It follows that

$$\operatorname{rank}(T) = n - k = \dim(V) - \operatorname{nullity}(T),$$

or equivalently that

$$\operatorname{nullity}(T) + \operatorname{rank}(T) = \operatorname{dim}(V).$$

One-to-One Linear Transformations

A linear transformation is **one-to-one** if

$$T(x) = T(y)$$
 implies $x = y$.

Theorem

A linear transformation $T : V \to W$ is one-to-one if and only if $N(T) = \{0\}.$

(⇒) If $T : V \rightarrow W$ is one-to-one, then N(T) can only have one element, which must be the zero vector.

One-to-One Linear Transformations

A linear transformation is one-to-one if

$$T(x) = T(y)$$
 implies $x = y$.

Theorem

A linear transformation $T : V \to W$ is one-to-one if and only if $N(T) = \{0\}.$

(\Leftarrow) Suppose N(T) = {0}. If T(x) = T(y), then

$$T(x-y) = T(x) - T(y) = 0.$$

Therefore $x - y \in N(T)$. Since $N(T) = \{0\}$ this means x - y = 0, or x = y.

One-to-One Linear Transformations

A linear transformation is **one-to-one** if

$$T(x) = T(y)$$
 implies $x = y$.

Theorem

A linear transformation $T : V \to W$ is one-to-one if and only if $N(T) = \{0\}.$

Corollary

Suppose V and W are finite dimensional vector spaces. For any linear transformation $T : V \rightarrow W$, the following are equivalent:

- 1. T is one-to-one
- 2. nullity(T) = 0
- 3. rank(T) = dim(V)

Onto Linear Transformations

A linear transformation $T : V \to W$ is **onto** if for every $w \in W$ there is a $v \in V$ such that w = T(v).

Theorem

A linear transformation $T : V \to W$ is onto if and only if R(T) = W.

Corollary

Suppose V and W are finite dimensional vector spaces. For any linear transformation $T : V \rightarrow W$, the following are equivalent:

- 1. T is onto
- 2. rank(T) = dim(W)

3.
$$\operatorname{nullity}(T) = \operatorname{dim}(V) - \operatorname{dim}(W)$$

One-to-One and Onto Linear Transformations

Theorem

Suppose V and W are finite dimensional vector spaces of equal dimension n. For any linear transformation $T : V \rightarrow W$, the following are equivalent:

- 1. T is one-to-one and onto
- 2. T is one-to-one
- 3. T is onto
- 4. nullity(T) = 0
- 5. rank(T) = n