Slides for April 4

Math 24 — Spring 2014

If v_1, v_2, \ldots, v_k is a finite list of vectors in a vector space V such that

$$v_i \notin \mathsf{span}\{v_1, \dots, v_{i-1}\}$$

for i = 1, 2, ..., k, then the set $\{v_1, v_2, ..., v_k\}$ is linearly independent.

Indirect Proof.

Suppose

$$a_1v_1+a_2v_2+\cdots+a_iv_i=0$$

where $a_i \neq 0$. Then

$$v_i = -\frac{a_1}{a_i}v_1 - \frac{a_2}{a_i}v_2 - \cdots - \frac{a_{i-1}}{a_i}v_{i-1}.$$

Therefore, $v_i \in \text{span}\{v_1, v_2, \dots, v_{i-1}\}.$

Suppose A is a finite set of vectors in a vector space V. If $C \subseteq A$ is linearly independent then there is a linearly independent set B such that $C \subseteq B \subseteq A$ and span(B) = span(A).

Write $A = \{v_1, v_2, \dots, v_k\}$ and $C = \{v_1, v_2, \dots, v_i\}$. We proceed by induction on $k \ge i$.

Base Case (k = i). Then A = C and B = A = C works: 1. $C \subseteq B \subseteq A$.

2. *B* is linearly independent because B = C.

3. $\operatorname{span}(B) = \operatorname{span}(A)$ because B = A.

Suppose A is a finite set of vectors in a vector space V. If $C \subseteq A$ is linearly independent then there is a linearly independent set B such that $C \subseteq B \subseteq A$ and span(B) = span(A).

Induction Step $(k \rightarrow k + 1)$.

Let
$$A = \{v_1, v_2, \dots, v_k, v_{k+1}\}$$
 be given.
Write $A_0 = \{v_1, v_2, \dots, v_k\}$.
By the *Induction Hypothesis*, there is a set B_0 such that

1.
$$C \subseteq B_0 \subseteq A_0$$
.

- 2. B_0 is linearly independent.
- 3. $\operatorname{span}(B_0) = \operatorname{span}(A_0)$.

Suppose A is a finite set of vectors in a vector space V. If $C \subseteq A$ is linearly independent then there is a linearly independent set B such that $C \subseteq B \subseteq A$ and span(B) = span(A).

Induction Step (continued)

3. span(B) = span(A) because $A = A_0 \cup \{v_{k+1}\} \subseteq span(B)$.

Every finite generating set in a vector space V contains a basis for V.

Let A be a finite generating subset of V. By Theorem 2, there is a set B such that:

- 1. $\emptyset \subseteq B \subseteq A$.
- 2. B is linearly independent.
- 3. $\operatorname{span}(B) = \operatorname{span}(A) = V$.

Thus, B is a basis for V contained in A.

Every finite linearly independent set in a finitely generated vector space V can be extended to a basis for V.

Proof.

Let C be a finite linearly independent set and let A be a finite generating for V set containing C. By Theorem 2, there is a set B such that:

- 1. $C \subseteq B \subseteq A$.
- 2. B is linearly independent.
- 3. $\operatorname{span}(B) = \operatorname{span}(A) = V$.

Thus, B is a basis for V extending C.

If v_1, v_2, \ldots, v_k is a finite list of vectors in a vector space V then every list of k + 1 (or more) vectors from span $\{v_1, v_2, \ldots, v_k\}$ is linearly dependent.

We proceed by induction on $k \ge 1$.

```
Base Case (k = 1).
```

Suppose $x_1, x_2 \in \text{span}\{v_1\}$, say $x_1 = a_1v_1$ and $x_2 = a_2v_1$. Then

$$a_2x_1 - a_1x_2 = a_2(a_1v_1) - a_1(a_2v_1) = (a_2a_1 - a_1a_2)v_1 = 0v_1 = 0.$$

So, if $a_1 \neq 0$ or $a_2 \neq 0$, this shows that x_1, x_2 are linearly dependent.

On the other hand, if $a_1 = a_2 = 0$ then $x_1 = x_2 = 0$ and hence x_1, x_2 are again linearly dependent.

If v_1, v_2, \ldots, v_k is a finite list of vectors in a vector space V then every list of k + 1 (or more) vectors from span $\{v_1, v_2, \ldots, v_k\}$ is linearly dependent.

Induction Step $(k - 1 \rightarrow k)$.

Suppose $x_1, x_2, ..., x_k, x_{k+1} \in span\{v_1, v_2, ..., v_k\}$, say:

$x_1 =$	$a_{1,1}v_1$	+	$a_{1,2}v_2$	$+\cdots +$	$a_{1,k}v_k$
$x_2 =$	$a_{2,1}v_1$	+	<i>a</i> _{2,2} <i>v</i> ₂	$+\cdots +$	$a_{2,k}v_k$
÷	÷				÷
$x_k =$	$a_{k,1}v_1$	+	a _{k,2} v ₂	$+\cdots +$	$a_{k,k}v_k$
$x_{k+1} =$	$a_{k+1,1}v_1$	+	$a_{k+1,2}v_2$	$+\cdots +$	$a_{k+1,k}v_k$

If v_1, v_2, \ldots, v_k is a finite list of vectors in a vector space V then every list of k + 1 (or more) vectors from span $\{v_1, v_2, \ldots, v_k\}$ is linearly dependent.

Induction Step (continued).

▶ In the case where $a_{1,k} = a_{2,k} = \cdots = a_{k,k} = a_{k+1,k} = 0$. Then we have $x_1, x_2, \ldots, x_k, x_{k+1} \in \text{span}\{v_1, v_2, \ldots, v_{k-1}\}$. The induction hypothesis applies directly to show that $x_1, x_2, \ldots, x_k, x_{k+1}$ is linearly dependent.

If v_1, v_2, \ldots, v_k is a finite list of vectors in a vector space V then every list of k + 1 (or more) vectors from span $\{v_1, v_2, \ldots, v_k\}$ is linearly dependent.

Induction Step (continued).

► Otherwise, we may assume that a_{k+1,k} ≠ 0. Consider the vectors

$$y_1 = x_1 - \frac{a_{1,k}}{a_{k+1,k}} x_{k+1}$$

$$\vdots \qquad \vdots$$

$$y_k = x_k - \frac{a_{k,k}}{a_{k+1,k}} x_{k+1}$$

Note that $y_1, y_2, ..., y_k \in \text{span}\{v_1, v_2, ..., v_{k-1}\}.$

If v_1, v_2, \ldots, v_k is a finite list of vectors in a vector space V then every list of k + 1 (or more) vectors from span{ v_1, v_2, \ldots, v_k } is linearly dependent.

Proof.

Induction Step (continued).

By induction hypothesis there are scalars b_1, \ldots, b_k , not all zero, such that

$$0=b_1y_1+b_2y_2+\cdots+b_ky_k.$$

Thus

$$0 = b_1 x_1 + b_2 x_2 + \dots + b_k x_k - c x_{k+1}$$

for some scalar c.

Therefore $x_1, x_2, \ldots, x_k, x_{k+1}$ are linearly dependent.