Slides for April 4

Math 24 - Spring 2014

Theorem 1

If $v_{1}, v_{2}, \ldots, v_{k}$ is a finite list of vectors in a vector space V such that

$$
v_{i} \notin \operatorname{span}\left\{v_{1}, \ldots, v_{i-1}\right\}
$$

for $i=1,2, \ldots, k$, then the set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent.

Indirect Proof.
Suppose

$$
a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{i} v_{i}=0
$$

where $a_{i} \neq 0$.
Then

$$
v_{i}=-\frac{a_{1}}{a_{i}} v_{1}-\frac{a_{2}}{a_{i}} v_{2}-\cdots-\frac{a_{i-1}}{a_{i}} v_{i-1}
$$

Therefore, $v_{i} \in \operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}$.

Theorem 2

Suppose A is a finite set of vectors in a vector space V . If $C \subseteq A$ is linearly independent then there is a linearly independent set B such that $C \subseteq B \subseteq A$ and $\operatorname{span}(B)=\operatorname{span}(A)$.

Write $A=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ and $C=\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$. We proceed by induction on $k \geq i$.

Base Case $(k=i)$.
Then $A=C$ and $B=A=C$ works:

1. $C \subseteq B \subseteq A$.
2. B is linearly independent because $B=C$.
3. $\operatorname{span}(B)=\operatorname{span}(A)$ because $B=A$.

Theorem 2

Suppose A is a finite set of vectors in a vector space V . If $C \subseteq A$ is linearly independent then there is a linearly independent set B such that $C \subseteq B \subseteq A$ and $\operatorname{span}(B)=\operatorname{span}(A)$.

Induction Step $(k \rightarrow k+1)$.
Let $A=\left\{v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}\right\}$ be given.
Write $A_{0}=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$.
By the Induction Hypothesis, there is a set B_{0} such that

1. $C \subseteq B_{0} \subseteq A_{0}$.
2. B_{0} is linearly independent.
3. $\operatorname{span}\left(B_{0}\right)=\operatorname{span}\left(A_{0}\right)$.

Theorem 2

Suppose A is a finite set of vectors in a vector space V . If $C \subseteq A$ is linearly independent then there is a linearly independent set B such that $C \subseteq B \subseteq A$ and $\operatorname{span}(B)=\operatorname{span}(A)$.

Induction Step (continued)

- If $v_{k+1} \in \operatorname{span}\left(B_{0}\right)$ then $B=B_{0}$ works:

1. $C \subseteq B \subseteq A$.
2. B is linearly independent because $B=B_{0}$.
3. $\operatorname{span}(B)=\operatorname{span}(A)$ because $A=A_{0} \cup\left\{v_{k+1}\right\} \subseteq \operatorname{span}(B)$.

- If $v_{k+1} \notin \operatorname{span}\left(B_{0}\right)$ then $B=B_{0} \cup\left\{v_{k+1}\right\}$ works:

1. $C \subseteq B \subseteq A$.
2. B is linearly independent by Theorem 1.7.
3. $\operatorname{span}(B)=\operatorname{span}(A)$ because $A=A_{0} \cup\left\{v_{k+1}\right\} \subseteq \operatorname{span}(B)$.

Theorem 3

Every finite generating set in a vector space V contains a basis for V.

Let A be a finite generating subset of V .
By Theorem 2, there is a set B such that:

1. $\varnothing \subseteq B \subseteq A$.
2. B is linearly independent.
3. $\operatorname{span}(B)=\operatorname{span}(A)=V$.

Thus, B is a basis for V contained in A.

Every finite linearly independent set in a finitely generated vector space V can be extended to a basis for V .

Proof.

Let C be a finite linearly independent set and let A be a finite generating for V set containing C.
By Theorem 2, there is a set B such that:

1. $C \subseteq B \subseteq A$.
2. B is linearly independent.
3. $\operatorname{span}(B)=\operatorname{span}(A)=V$.

Thus, B is a basis for V extending C.

Theorem 5

If $v_{1}, v_{2}, \ldots, v_{k}$ is a finite list of vectors in a vector space V then every list of $k+1$ (or more) vectors from $\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly dependent.

We proceed by induction on $k \geq 1$.
Base Case $(k=1)$.
Suppose $x_{1}, x_{2} \in \operatorname{span}\left\{v_{1}\right\}$, say $x_{1}=a_{1} v_{1}$ and $x_{2}=a_{2} v_{1}$. Then

$$
a_{2} x_{1}-a_{1} x_{2}=a_{2}\left(a_{1} v_{1}\right)-a_{1}\left(a_{2} v_{1}\right)=\left(a_{2} a_{1}-a_{1} a_{2}\right) v_{1}=0 v_{1}=0
$$

So, if $a_{1} \neq 0$ or $a_{2} \neq 0$, this shows that x_{1}, x_{2} are linearly dependent.
On the other hand, if $a_{1}=a_{2}=0$ then $x_{1}=x_{2}=0$ and hence x_{1}, x_{2} are again linearly dependent.

Theorem 5

If $v_{1}, v_{2}, \ldots, v_{k}$ is a finite list of vectors in a vector space V then every list of $k+1$ (or more) vectors from $\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly dependent.

Induction Step $(k-1 \rightarrow k)$.
Suppose $x_{1}, x_{2}, \ldots, x_{k}, x_{k+1} \in \operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, say:

$$
\begin{array}{rc}
x_{1} & =a_{1,1} v_{1}+a_{1,2} v_{2}+\cdots+a_{1, k} v_{k} \\
x_{2} & =a_{2,1} v_{1}+a_{2,2} v_{2}+\cdots+a_{2, k} v_{k} \\
\vdots & \vdots \\
x_{k} & =a_{k, 1} v_{1}+a_{k, 2} v_{2}+\cdots+a_{k, k} v_{k} \\
x_{k+1} & =a_{k+1,1} v_{1}+a_{k+1,2} v_{2}+\cdots+a_{k+1, k} v_{k}
\end{array}
$$

Theorem 5

If $v_{1}, v_{2}, \ldots, v_{k}$ is a finite list of vectors in a vector space V then every list of $k+1$ (or more) vectors from $\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly dependent.

Induction Step (continued).

- In the case where $a_{1, k}=a_{2, k}=\cdots=a_{k, k}=a_{k+1, k}=0$. Then we have $x_{1}, x_{2}, \ldots, x_{k}, x_{k+1} \in \operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$. The induction hypothesis applies directly to show that $x_{1}, x_{2}, \ldots, x_{k}, x_{k+1}$ is linearly dependent.

Theorem 5

If $v_{1}, v_{2}, \ldots, v_{k}$ is a finite list of vectors in a vector space V then every list of $k+1$ (or more) vectors from $\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly dependent.

Induction Step (continued).

- Otherwise, we may assume that $a_{k+1, k} \neq 0$.

Consider the vectors

$$
\begin{gathered}
y_{1}=x_{1}-\frac{a_{1, k}}{a_{k+1, k}} x_{k+1} \\
\vdots \\
\vdots \\
y_{k}=x_{k}-\frac{a_{k, k}}{a_{k+1, k}} x_{k+1}
\end{gathered}
$$

Note that $y_{1}, y_{2}, \ldots, y_{k} \in \operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}$.

Theorem 5

If $v_{1}, v_{2}, \ldots, v_{k}$ is a finite list of vectors in a vector space V then every list of $k+1$ (or more) vectors from $\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly dependent.

Proof.

Induction Step (continued).
By induction hypothesis there are scalars b_{1}, \ldots, b_{k}, not all zero, such that

$$
0=b_{1} y_{1}+b_{2} y_{2}+\cdots+b_{k} y_{k}
$$

Thus

$$
0=b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{k} x_{k}-c x_{k+1}
$$

for some scalar c.
Therefore $x_{1}, x_{2}, \ldots, x_{k}, x_{k+1}$ are linearly dependent.

