Quiz 7

Math 24 - Spring 2014

Sample Solutions

Let $A=\left(\begin{array}{cc}1+i & 1 \\ 0 & 1-i\end{array}\right)$.
1.- Compute an eigenvector for the eigenvalue $1+i$.

Solution. The null space of $A-(1+i) I=\left(\begin{array}{cc}0 & 1 \\ 0 & -2 i\end{array}\right)$ is $\operatorname{span}\left\{e_{1}\right\}$.
2.- Compute an eigenvector for the eigenvalue $1-i$.

Solution. The null space of $A-(1+i) I=\left(\begin{array}{cc}2 i & 1 \\ 0 & 0\end{array}\right)$ is $\operatorname{span}\left\{(-i / 2) e_{1}+e_{2}\right\}$.
3.- Compute the (standard) inner product of the two eigenvectors you just found.

Solution. $\left\langle e_{1},(-i / 2) e_{1}+e_{2}\right\rangle=\left\langle e_{1},(-i / 2) e_{1}\right\rangle+\left\langle e_{1}, e_{2}\right\rangle=(i / 2)\left\langle e_{1}, e_{1}\right\rangle+\left\langle e_{1}, e_{2}\right\rangle=i / 2$.
4.- Explain why A is not normal.

Solution. If A were normal, its eigenspaces would be orthogonal to each other by Theorem 6.15(d). Part 3 shows that this is not the case, so A cannot be normal. Note that A is still diagonalizable since it has two distinct eigenvalues.

