Quiz 5

Math 24 - Spring 2014
Sample Solutions

Let F be an arbitrary field.
(A) A square matrix A is idempotent if $A^{k}=A$ for every positive integer k. Show that every idempotent matrix $A \in \mathrm{M}_{n \times n}(F)$ has determinant 0 or determinant 1 .

Solution. Since determinants are multiplicative, for an idempotent matrix A we have $\operatorname{det}(A)^{2}=\operatorname{det}\left(A^{2}\right)=$ $\operatorname{det}(A)$ since $A^{2}=A$. In other words, $\operatorname{det}(A)(\operatorname{det}(A)-1)=0$. Since a product of two elements of a field is zero precisely if one of the two elements is zero, we conclude that $\operatorname{det}(A)=0$ or $\operatorname{det}(A)=1$.

Solution. We consider two cases, depending on whether A is invertible or not.
If A is invertible, then mutiplying $A^{2}=A$ by A^{-1} gives $A=I$ and $\operatorname{so} \operatorname{det}(A)=\operatorname{det}(I)=1$.
If A is not invertible, then $\operatorname{det}(A)=0$ by the Corollary of Theorem 4.7.
Either way, we see that $\operatorname{det}(A)=0$ or $\operatorname{det}(A)=1$.
(B) A square matrix B is nilpotent if $B^{k}=O$ for some positive integer k. Show that every nilpotent matrix $B \in$ $\mathrm{M}_{n \times n}(F)$ has determinant 0 .

Solution. Suppose k is a positive integer such that $B^{k}=O$. Then

$$
0=\operatorname{det}\left(B^{k}\right)=\operatorname{det}(\underbrace{B \cdots B}_{k \text { times }})=\underbrace{\operatorname{det}(B) \cdots \operatorname{det}(B)}_{k \text { times }}=\operatorname{det}(B)^{k} .
$$

If $\operatorname{det}(B)$ were nonzero then $\operatorname{det}(B)^{k}$ would be nonzero too since, in any field, a product of nonzero elements is always nonzero. Therefore, we must have $\operatorname{det}(B)=0$.

Solution. It suffices to show that B is not invertible. If B were invertible, with inverse B^{-1}, then every power B^{k} is invertible too since

$$
B^{k}\left(B^{-1}\right)^{k}=\underbrace{B \cdots B}_{k \text { times }} \underbrace{B^{-1} \cdots B^{-1}}_{k \text {-times }}=I, \quad\left(B^{-1}\right)^{k} B^{k}=\underbrace{B^{-1} \cdots B^{-1}}_{k \text { times }} \underbrace{B \cdots B}_{k \text {-times }}=I,
$$

which can be seen by computing the product starting in the middle and working out way out. However, the zero matrix O is not invertible, so we cannot have $B^{k}=O$ when B is invertible. Therefore, if B is nilpotent then it is not invertible and therefore $\operatorname{det}(B)=0$ by the Corollary of Theorem 4.7.

Solution. By the Corollary of Theorem 4.7, it suffices to show that B is not invertible. One way to do this is to show that $\operatorname{rank}(B) \neq n$, or equivalently that nullity $(B) \neq 0$ by the Dimension Theorem (in matrix formulation).
Let k be the smallest positive integer such that $B^{k}=O$. If $k=1$ then $B=O$ and $\operatorname{nullity}(B)=n$. If $k>1$, then B^{k-1} is not the zero matrix. If $v_{1}, v_{2}, \ldots, v_{n}$ are the columns of B^{k-1}, then $B v_{1}, B v_{2}, \ldots, B v_{n}$ are the columns of $B^{k}=B B^{k-1}$. Since B^{k-1} is not the zero matrix, then $v_{i} \neq 0$ for some i. But since B^{k} is the zero matrix, $B v_{i}=0$. Thus v_{i} is a nonzero element of the null space of B, which shows that nullity $(B) \neq 0$.

