Quiz 4

MATH 24 - Spring 2014

Sample Solutions

Given

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-4 & -3 & -4 \\
0 & -5 & -3
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
0 & -5 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right)
$$

Compute A^{-1}.
Solution. The colums of A^{-1} are $v_{1}=A^{-1} e_{1}, v_{2}=A^{-1} e_{2}$ and $v_{3}=A^{-1} e_{1}$. In other words, they are the solutions to the equations $A v_{1}=e_{1}, A v_{2}=e_{2}$ and $A v_{3}=e_{3}$. Since we are given the $L U$-factorization of A, we can solve these with ease...

- To solve $A v_{1}=e_{1}$, first solve $L w_{1}=e_{1}$ to find $w_{1}=(1,4,20)$ and then solve $U v_{1}=w_{1}$ to find $v_{1}=$ (11/3, 4, -20/3).
- To solve $A v_{2}=e_{2}$, first solve $L w_{2}=e_{2}$ to find $w_{2}=(0,1,5)$ and then solve $U v_{2}=w_{2}$ to find $v_{2}=$ $(2 / 3,1,-5 / 3)$.
- To solve $A v_{3}=e_{3}$, first solve $L w_{3}=e_{3}$ to find $w_{3}=(0,0,1)$ and then solve $U v_{3}=w_{3}$ to find $v_{3}=$ $(1 / 3,0,-1 / 3)$.

Therefore,

$$
A^{-1}=\left(\begin{array}{ccc}
11 / 3 & 2 / 3 & 1 / 3 \\
4 & 1 & 0 \\
-20 / 3 & -5 / 3 & -1 / 3
\end{array}\right)
$$

Solution. An alternative is to find the reduced row echelon form of the augmented matrix

$$
(A \mid I)=\left(\begin{array}{rrr|rrr}
1 & 1 & 1 & 1 & 0 & 0 \\
-4 & -3 & -4 & 0 & 1 & 0 \\
0 & -5 & -3 & 0 & 0 & 1
\end{array}\right)
$$

This can be done in using five row operations to obtain

$$
\left(I \mid A^{-1}\right)=\left(\begin{array}{rrr|rrr}
1 & 0 & 0 & 11 / 3 & 2 / 3 & 1 / 3 \\
0 & 1 & 0 & 4 & 1 & 0 \\
0 & 0 & 1 & -20 / 3 & -5 / 3 & -1 / 3
\end{array}\right) .
$$

Solution. Yet another alternative is to compute L^{-1} and U^{-1} since $A^{-1}=U^{-1} L^{-1}$ from Exercise 4 of Section 2.4. Finding the inverse of an upper/lower triangular matrix is significantly easier than the general case.
We already did all the work to find L^{-1} in the first solution by computing the three vectors w_{1}, w_{2}, w_{3}, so

$$
L^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
4 & 1 & 0 \\
20 & 5 & 1
\end{array}\right)
$$

Finding U^{-1} involves finding x_{1}, x_{2}, x_{3} such that $U x_{1}=e_{1}, U x_{2}=e_{2}, U x_{3}=e_{3}$. Using a similar process to the first solution, we find $x_{1}=(1,0,0), x_{2}=(-1,1,0), x_{3}=(1 / 3,0,-1 / 3)$. So

$$
U^{-1}=\left(\begin{array}{ccc}
1 & -1 & 1 / 3 \\
0 & 1 & 0 \\
0 & 0 & -1 / 3
\end{array}\right)
$$

Finally,

$$
A^{-1}=U^{-1} L^{-1}=\left(\begin{array}{ccc}
11 / 3 & 2 / 3 & 1 / 3 \\
4 & 1 & 0 \\
-20 / 3 & -5 / 3 & -1 / 3
\end{array}\right)
$$

