Quiz 3

Math 24 - Spring 2014

Sample Solutions

The space $P_{2}(\mathbb{R})$ has for standard ordered basis $\alpha=\left\{1, x, x^{2}\right\}$ and another ordered basis

$$
\beta=\left\{\frac{1}{2} x^{2}-\frac{1}{2} x, 1-x^{2}, \frac{1}{2} x^{2}+\frac{1}{2} x\right\} .
$$

The space \mathbb{R}^{3} has the standard ordered basis $\gamma=\left\{e_{1}, e_{2}, e_{3}\right\}$.
Let $T: \mathrm{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $T(f)=(f(-1), f(0), f(1))$ for every $f(x) \in \mathrm{P}_{2}(\mathbb{R})$. For example,

$$
T\left(x^{2}+x+1\right)=\left(\begin{array}{c}
(-1)^{2}+(-1)+1 \\
(0)^{2}+(0)+1 \\
(1)^{2}+(1)+1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right) .
$$

(a) Compute $\left[x^{2}\right]_{\beta},[x]_{\beta},[1]_{\beta}$. Justify your answers.

Solution. Since

$$
x^{2}=1\left(\frac{1}{2} x^{2}-\frac{1}{2} x\right)+0\left(1-x^{2}\right)+1\left(\frac{1}{2} x^{2}+\frac{1}{2} x\right)
$$

we see that $\left[x^{2}\right]_{\beta}=(1,0,1)$.
Since

$$
x=-1\left(\frac{1}{2} x^{2}-\frac{1}{2} x\right)+0\left(1-x^{2}\right)+1\left(\frac{1}{2} x^{2}+\frac{1}{2} x\right)
$$

we see that $[x]_{\beta}=(-1,0,1)$.
Since

$$
1=1\left(\frac{1}{2} x^{2}-\frac{1}{2} x\right)+1\left(1-x^{2}\right)+1\left(\frac{1}{2} x^{2}+\frac{1}{2} x\right)
$$

we see that $[1]_{\beta}=(1,1,1)$.
(b) Compute $[T]_{\alpha}^{\gamma}$ and $[T]_{\beta}^{\gamma}$. Justify your answers.

Solution. Since $T(1)=(1,1,1), T(x)=(-1,0,1), T\left(x^{2}\right)=(1,0,1)$, we see that

$$
[T]_{\alpha}^{\gamma}=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

Since $T\left(\frac{1}{2} x^{2}-\frac{1}{2} x\right)=(1,0,0), T\left(1-x^{2}\right)=(0,1,0), T\left(\frac{1}{2} x^{2}+\frac{1}{2} x\right)=(0,0,1)$, we see that

$$
[T]_{\beta}^{\gamma}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(c) Show that $[T]_{\alpha}^{\gamma}[f]_{\alpha}=[f]_{\beta}$ for every $f(x) \in \mathrm{P}_{2}(\mathbb{R})$.

Solution. By Theorem 2.14, we have

$$
[T(f)]_{\gamma}=[T]_{\alpha}^{\gamma}[f]_{\alpha} \quad \text { and } \quad[T(f)]_{\gamma}=[T]_{\beta}^{\gamma}[f]_{\beta}
$$

Therefore,

$$
[T]_{\alpha}^{\gamma}[f]_{\alpha}=[T]_{\beta}^{\gamma}[f]_{\beta}
$$

Since $[T]_{\beta}^{\gamma}$ is the 3×3 identity matrix by part (b), we also have $[T]_{\beta}^{\gamma}[f]_{\beta}=[f]_{\beta}$. Therefore, $[T]_{\alpha}^{\gamma}[f]_{\alpha}=[f]_{\beta}$.
Solution. Suppose $f(x)=a+b x+c x^{2}$. By part (a), we see that

$$
[f]_{\beta}=\left[a 1+b x+c x^{2}\right]_{\beta}=a[1]_{\beta}+b[x]_{\beta}+c\left[x^{2}\right]_{\beta}=\left(\begin{array}{c}
a-b+c \\
a \\
a+b+c
\end{array}\right)
$$

On the other hand,

$$
[T]_{\alpha}^{\gamma}[f]_{\alpha}=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
a-b+c \\
a \\
a+b+c
\end{array}\right)
$$

Therefore, $[T]_{\alpha}^{\gamma}[f]_{\alpha}=[f]_{\beta}$.

