Quiz 3

Math 24 - Spring 2014

Sample Solutions

The space $\mathrm{P}_{2}(\mathbb{R})$ has the standard ordered basis $\alpha=\left\{1, x, x^{2}\right\}$ and the space \mathbb{R}^{2} has the standard ordered basis $\gamma=\left\{e_{1}, e_{2}\right\}$.
Let $T: \mathrm{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by $T(f(x))=\left(f^{\prime}(0), f^{\prime}(1)\right)$ for every $f(x) \in \mathrm{P}_{2}(\mathbb{R})$. For example,

$$
T\left(x^{2}-x\right)=\binom{2(0)-1}{2(1)-1}=\binom{-1}{1}
$$

since the derivative of $x^{2}-x$ is $2 x-1$.
Let $S: \mathbb{R}^{2} \rightarrow \mathrm{P}_{2}(\mathbb{R})$ be the linear transformation such that

$$
[S]_{\gamma}^{\alpha}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
0 & 0
\end{array}\right) .
$$

(a) Compute $S\left(e_{1}\right)$ and $S\left(e_{2}\right)$. Justify your answers.

Solution. Since

$$
\left[S\left(e_{1}\right)\right]_{\alpha}=[S]_{\gamma}^{\alpha}\left[e_{1}\right]_{\gamma}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right),
$$

we see that

$$
S\left(e_{1}\right)=1-x .
$$

Since

$$
\left[S\left(e_{2}\right)\right]_{\alpha}=[S]_{\gamma}^{\alpha}\left[e_{2}\right]_{\gamma}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) .
$$

we see that

$$
S\left(e_{2}\right)=x .
$$

(b) Compute $[T]_{\alpha}^{\gamma}$. Justify your answer.

Solution. Since $T(1)=(0,0), T(x)=(1,1), T\left(x^{2}\right)=(0,2)$,

$$
[T]_{\alpha}^{\gamma}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 2
\end{array}\right) .
$$

(c) Show that $S T(f(x))=f^{\prime}(x)$ for every $f(x) \in \mathrm{P}_{2}(\mathbb{R})$.

Solution. Since

$$
\begin{aligned}
& S T(1)=S(0,0)=0 \\
& S T(x)=S(1,1)=S\left(e_{1}\right)+S\left(e_{2}\right)=(1-x)+(x)=1 \\
& S T\left(x^{2}\right)=S(0,2)=2 S\left(e_{2}\right)=2 x,
\end{aligned}
$$

We see that if $f(x)=a_{0}+a_{1} x+a_{2} x^{2}$ then

$$
\begin{aligned}
S T(f) & =a_{0} S T(1)+a_{1} S T(x)+a_{2} S T\left(x^{2}\right) \\
& =a_{0}(0)+a_{1}(1)+a_{2}(2 x)=a_{1}+2 a_{2} x=f^{\prime}(x)
\end{aligned}
$$

Solution. First note that, by Theorem 2.11, we have

$$
[S T]_{\alpha}^{\alpha}=[S]_{\gamma}^{\alpha}[T]_{\alpha}^{\gamma}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

Since $\frac{d}{d x}[1]=0, \frac{d}{d x}[x]=1, \frac{d}{d x}\left[x^{2}\right]=2 x$, this is also the matrix representation of the derivative with respect to the standard basis α. By Theorem 2.20, we conclude that $S T(f)=f^{\prime}$ for every $f \in \mathrm{P}_{2}(\mathbb{R})$.

