Quiz 2

MATH 24 - Spring 2014

Sample Solutions

Find a basis for the subspace W of \mathbb{R}^{3} consisting of all vectors $\left(x_{1}, x_{2}, x_{3}\right)$ such that $x_{1}+3 x_{2}-2 x_{3}=0$. Justify your answer.

Solution. The given equation can be rewritten $x_{1}=2 x_{3}-3 x_{2}$. Given $x_{2}=a$ and $x_{3}=b$, we are led to the vector solution

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
2 b-3 a \\
a \\
b
\end{array}\right)=a\left(\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right)+b\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right) .
$$

So the two vectors $(-3,1,0)$ and $(2,0,1)$ generate W.
These two vectors are linearly independent since

$$
a\left(\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right)+b\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

implies that $a=0$ by looking at the second coordinate and that $b=0$ by looking at the third coordinate. Therefore $\{(-3,1,0),(2,0,1)\}$ is a basis for the subspace W .

Solution. By inspection, we find the two solutions $(1,1,2)$ and $(5,-1,1)$. These are linearly independent vectors because

$$
a\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)+b\left(\begin{array}{c}
5 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

leads to the system of equations

$$
a+5 b=0, \quad a-b=0, \quad 2 a+b=0
$$

The second equation entails that $a=b$ and then the third equation leads to $3 a=0$. Since we're working in the field \mathbb{R}, we know that $3 \neq 0$ and therefore $a=b=0$.
Since we found two linearly independent vectors in W, we know that the dimension of W is at least 2 . The dimension of W cannot be 3 for then W would have to equal \mathbb{R}^{3} but we know that $W \neq \mathbb{R}^{3}$ since, for example, the vector $(1,1,1)$ is not in W .
Therefore, W must have dimension 2 and this means that $\{(5,-1,1),(1,1,2)\}$ is a basis for W by Corollary $2(\mathrm{~b})$ of Theorem 1.10.

