Quiz 2

MATH 24 — Spring 2014

Sample Solutions

Find a basis for the subspace W of \mathbb{R}^3 consisting of all vectors (x_1, x_2, x_3) such that $x_1 + 3x_2 - 2x_3 = 0$. Justify your answer.

Solution. The given equation can be rewritten $x_1 = 2x_3 - 3x_2$. Given $x_2 = a$ and $x_3 = b$, we are led to the vector solution

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2b - 3a \\ a \\ b \end{pmatrix} = a \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}.$$

So the two vectors (-3, 1, 0) and (2, 0, 1) generate W. These two vectors are linearly independent since

$$a \begin{pmatrix} -3\\1\\0 \end{pmatrix} + b \begin{pmatrix} 2\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

implies that a = 0 by looking at the second coordinate and that b = 0 by looking at the third coordinate. Therefore $\{(-3, 1, 0), (2, 0, 1)\}$ is a basis for the subspace W.

Solution. By inspection, we find the two solutions (1,1,2) and (5,-1,1). These are linearly independent vectors because

$$a \begin{pmatrix} 1\\1\\2 \end{pmatrix} + b \begin{pmatrix} 5\\-1\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

leads to the system of equations

$$a + 5b = 0$$
, $a - b = 0$, $2a + b = 0$.

The second equation entails that a = b and then the third equation leads to 3a = 0. Since we're working in the field \mathbb{R} , we know that $3 \neq 0$ and therefore a = b = 0.

Since we found two linearly independent vectors in W, we know that the dimension of W is at least 2. The dimension of W cannot be 3 for then W would have to equal \mathbb{R}^3 but we know that $W \neq \mathbb{R}^3$ since, for example, the vector (1, 1, 1) is not in W.

Therefore, W must have dimension 2 and this means that $\{(5, -1, 1), (1, 1, 2)\}$ is a basis for W by Corollary 2(b) of Theorem 1.10.