Quiz 1

MATH 24 — Spring 2014

Sample Solutions

A $n \times n$ matrix A over the field \mathbb{R} of real numbers is **skew-symmetric** if $A^t = -A$. (The transpose A^t of a matrix A is defined on page 17.) By Exercise 28 of Section 1.3, we know that the set W_n of all $n \times n$ skew-symmetric matrices over \mathbb{R} forms a subspace of $M_{n \times n}(\mathbb{R})$.

Show that the space W_2 of all 2×2 skew-symmetric matrices over \mathbb{R} is generated by the single matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Solution. We need to show that $W_2 = \operatorname{span} \{B\}$, where

$$B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

This amounts to two inclusions $W_2 \subseteq \text{span} \{A\}$ and $\text{span} \{A\} \subseteq W_2$.

To see that span $\{B\} \subseteq W_2$, it suffices to observe that B is skew-symmetric. This is because span $\{B\}$ is the smallest subspace of $M_{2\times 2}(\mathbb{R})$ that contains B, so if $B \in W_2$ then it must be that span $\{B\} \subseteq W_2$.

To see that $W_2 \subseteq \text{span}\{B\}$, we need to show that every 2×2 skew-symmetric matrix is a scalar multiple of B. In order for the matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

to be skew-symmetric, we need a = -a, d = -d and b = -c. Since we are working over the field \mathbb{R} , we can conclude that a = d = 0. Therefore,

$$A = \begin{pmatrix} 0 & -c \\ c & 0 \end{pmatrix} = cB,$$

which shows that A is a scalar multiple of B. Since A was an arbitrary skew-symmetric 2×2 matrix, we conclude that $W_2 \subseteq \text{span}\{B\}$.