Quiz 1

Math 24 - SPRING 2014
Sample Solutions

A $n \times n$ matrix A over the field \mathbb{R} of real numbers is skew-symmetric if $A^{t}=-A$. (The transpose A^{t} of a matrix A is defined on page 17.) By Exercise 28 of Section 1.3, we know that the set W_{n} of all $n \times n$ skew-symmetric matrices over \mathbb{R} forms a subspace of $\mathrm{M}_{n \times n}(\mathbb{R})$.
Show that the space W_{2} of all 2×2 skew-symmetric matrices over \mathbb{R} is generated by the single matrix $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
Solution. We need to show that $\mathrm{W}_{2}=\operatorname{span}\{B\}$, where

$$
B=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

This amounts to two inclusions $\mathrm{W}_{2} \subseteq \operatorname{span}\{A\}$ and span $\{A\} \subseteq \mathrm{W}_{2}$.
To see that span $\{B\} \subseteq \mathrm{W}_{2}$, it suffices to observe that B is skew-symmetric. This is because span $\{B\}$ is the smallest subspace of $\mathrm{M}_{2 \times 2}(\mathbb{R})$ that contains B, so if $B \in \mathrm{~W}_{2}$ then it must be that span $\{B\} \subseteq \mathrm{W}_{2}$.

To see that $\mathrm{W}_{2} \subseteq \operatorname{span}\{B\}$, we need to show that every 2×2 skew-symmetric matrix is a scalar multiple of B. In order for the matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

to be skew-symmetric, we need $a=-a, d=-d$ and $b=-c$. Since we are working over the field \mathbb{R}, we can conclude that $a=d=0$. Therefore,

$$
A=\left(\begin{array}{cc}
0 & -c \\
c & 0
\end{array}\right)=c B
$$

which shows that A is a scalar multiple of B. Since A was an arbitrary skew-symmetric 2×2 matrix, we conclude that $\mathrm{W}_{2} \subseteq \operatorname{span}\{B\}$.

