Homework Notes — Week 8

Math 24 -Spring 2014

§6.4#5 Suppose that T is normal. I will show that T - cI is normal too. By Theorem 6.11(a,b,e), we have

$$(T - cI)^* = T^* - \overline{c}I.$$

Therefore,

$$(T - cI)(T - cI)^* = (T - cI)(T^* - \bar{c}I) = TT^* - cT^* - \bar{c}T + c\bar{c}I$$

and

$$(T - cI)^*(T - cI) = (T^* - \bar{c}I)(T - cI) = T^*T - cT^* - \bar{c}T + c\bar{c}I.$$

Since T is normal, $TT^* = T^*T$ and we immediately see that (T - cI) is normal too.

§6.4#9* Theorem. If T is a normal operator on a finite dimensional inner product space, then $N(T) = N(T^*)$ and $R(T) = R(T^*)$.

Proof. The fact that $N(T) = N(T^*)$ is a consequence of Theorem 6.15(a), which says that $||T(x)|| = ||T^*(x)||$ for all x. Therefore,

$$T(x) = 0$$
 iff $||T(x)|| = 0$ iff $||T^*(x)|| = 0$ iff $T^*(x) = 0$

or, equivalently,

 $x \in \mathsf{N}(T)$ if and only if $x \in \mathsf{N}(T^*)$,

which is the same as saying that $N(T) = N(T^*)$.

From, Exercise 12 of Section 6.3, we know that $\mathsf{R}(T)^{\perp} = \mathsf{N}(T^*)$ and $\mathsf{R}(T^*)^{\perp} = \mathsf{N}(T)$. Since $(\mathsf{W}^{\perp})^{\perp} = \mathsf{W}$ by Theorem 6.7, we see that $\mathsf{R}(T) = \mathsf{N}(T^*)^{\perp} = \mathsf{N}(T)^{\perp} = \mathsf{R}(T^*)$.

§6.6#4* *Hint*: The fact that I - T is a projection (i.e., $(I - T)^2 = I - T$) follows from part E2 of the first exam. The fact that I - T is self-adjoint follows from the fact that T is self-adjoint. The fact that I - T is an orthogonal projection follows from Exercise 6 of this section.

§6.6#6 Note that a projection $T : \mathsf{V} \to \mathsf{V}$ has only two possible eigenvalues: 0 and 1. Indeed, if x is a nonzero vector and λ is a scalar such that $T(x) = \lambda x$, then $T^2(x) = \lambda^2 x$ but also $T^2(x) = \lambda x$ since $T^2 = T$. Therefore, $\lambda^2 = \lambda$, which has only two solutins $\lambda_1 = 0$ and $\lambda_2 = 1$.

If T is normal, then we can apply the Spectral Theorem to find orthogonal projections $T_1 : \mathsf{V} \to \mathsf{V}$ and $T_2 : \mathsf{V} \to \mathsf{V}$ such that $T = \lambda_1 T_1 + \lambda_2 T_2$. But $\lambda_1 = 0$ and $\lambda_2 = 1$, so $T = T_2$!

§7.1#7abcd

- (a) We need to show that for every positive integer k, we have $N(U^k) \subseteq N(U^{k+1})$. Well, if $U^k(x) = 0$ then $U^{k+1}(x) = U(U^k(x)) = U(0) = 0$.
- (c) First note that the hypothesis $\operatorname{rank}(U^{k+1}) = \operatorname{rank}(U^k)$ implies that $\mathsf{N}(U^{k+1}) = \mathsf{N}(U^k)$. Indeed, it follows from the Dimension Theorem that $\dim(\mathsf{N}(U^{k+1})) = \dim(\mathsf{N}(U^k))$ and since $\mathsf{N}(U^k) \subseteq \mathsf{N}(U^{k+1})$ by part (a), it follows that $\mathsf{N}(U^{k+1}) = \mathsf{N}(U^k)$.

I will now show that if $N(U^{k+1}) = N(U^k)$ then $N(U^n) = N(U^k)$ for all positive integers $n \ge k$.

The proof is by induction on $n \ge k$. The base case (n = k) just says that $N(U^k) = N(U^k)$, which is trivially true.

For the successor step $(n \to n+1)$, suppose that $\mathsf{N}(U^{k+1}) = \mathsf{N}(U^k)$ and that $\mathsf{N}(U^n) = \mathsf{N}(U^k)$. Since $U^{n+1}(x) = U^n(U(x))$, we see that

$$\mathsf{N}(U^{n+1}) = \{ x \in \mathsf{V} : U(x) \in \mathsf{N}(U^n) \}.$$

Since $N(U^n) = N(U^k)$ by the induction hypothesis, we see that

$$\mathsf{N}(U^{n+1}) = \{ x \in \mathsf{V} : U(x) \in \mathsf{N}(U^k) \} = \mathsf{N}(U^{k+1}).$$

Because $\mathsf{N}(U^{k+1}) = \mathsf{N}(U^k)$, we conclude that $\mathsf{N}(U^{n+1}) = \mathsf{N}(U^k)$.

(b) By part (a) and the Dimension Theorem, for all positive integers $n \ge k$, we have

$$\operatorname{rank}(U^n) = \operatorname{rank}(U^k)$$
 iff $\operatorname{nullity}(U^n) = \operatorname{nullity}(U^k)$ iff $\mathsf{N}(U^n) = \mathsf{N}(U^k)$,

where the last equality is because we know that $N(U^k) \subseteq N(U^n)$ by part (a). So part (b) follows immediately from part (c) above.

(d) By definition, $x \in \mathsf{K}_{\lambda}$ if and only if $x \in \mathsf{N}(T - \lambda I)^n$ for some positive integer n. By part (a) (with $U = T - \lambda I$) we have

$$\mathsf{N}(T - \lambda I) \subseteq \mathsf{N}(T - \lambda I)^2 \subseteq \mathsf{N}(T - \lambda I)^3 \subseteq \cdots$$

and, by part (c), if for any positive integer m we have

$$N(T - \lambda I)^{m+1} = N(T - \lambda I)^m$$

then the sequence stabilizes from that point on. So then, if $x \in \mathsf{N}(T - \lambda I)^n$, then either $n \leq m$ and $x \in \mathsf{N}(T - \lambda I)^n \subseteq \mathsf{N}(T - \lambda I)^m$, or else n > m and $x \in \mathsf{N}(T - \lambda I)^n = \mathsf{N}(T - \lambda I)^m$. Therefore, $\mathsf{K}_{\lambda} \subseteq \mathsf{N}(T - \lambda I)^m$ and since we necessarily have $\mathsf{N}(T - \lambda I)^m \subseteq \mathsf{K}_{\lambda}$ by definition of K_{λ} , we conclude that $\mathsf{N}(T - \lambda I)^m = \mathsf{K}_{\lambda}$.