# Homework Notes - Week 8 

## Math 24 - Spring 2014

$\S 6.4 \# 5$ Suppose that $T$ is normal. I will show that $T-c I$ is normal too. By Theorem 6.11(a,b,e), we have

$$
(T-c I)^{*}=T^{*}-\bar{c} I .
$$

Therefore,

$$
(T-c I)(T-c I)^{*}=(T-c I)\left(T^{*}-\bar{c} I\right)=T T^{*}-c T^{*}-\bar{c} T+c \bar{c} I
$$

and

$$
(T-c I)^{*}(T-c I)=\left(T^{*}-\bar{c} I\right)(T-c I)=T^{*} T-c T^{*}-\bar{c} T+c \bar{c} I .
$$

Since $T$ is normal, $T T^{*}=T^{*} T$ and we immediately see that $(T-c I)$ is normal too.
$\S 6.4 \# \mathbf{9}^{*}$ Theorem. If $T$ is a normal operator on a finite dimensional inner product space, then $\mathrm{N}(T)=\mathrm{N}\left(T^{*}\right)$ and $\mathrm{R}(T)=\mathrm{R}\left(T^{*}\right)$.
Proof. The fact that $\mathrm{N}(T)=\mathrm{N}\left(T^{*}\right)$ is a consequence of Theorem 6.15 (a), which says that $\|T(x)\|=\left\|T^{*}(x)\right\|$ for all $x$. Therefore,

$$
T(x)=0 \quad \text { iff } \quad\|T(x)\|=0 \quad \text { iff } \quad\left\|T^{*}(x)\right\|=0 \quad \text { iff } \quad T^{*}(x)=0
$$

or, equivalently,

$$
x \in \mathrm{~N}(T) \quad \text { if and only if } \quad x \in \mathrm{~N}\left(T^{*}\right)
$$

which is the same as saying that $\mathrm{N}(T)=\mathrm{N}\left(T^{*}\right)$.
From, Exercise 12 of Section 6.3, we know that $\mathrm{R}(T)^{\perp}=\mathrm{N}\left(T^{*}\right)$ and $\mathrm{R}\left(T^{*}\right)^{\perp}=$ $\mathrm{N}(T)$. Since $\left(\mathrm{W}^{\perp}\right)^{\perp}=\mathrm{W}$ by Theorem 6.7, we see that $\mathrm{R}(T)=\mathrm{N}\left(T^{*}\right)^{\perp}=\mathrm{N}(T)^{\perp}=$ $\mathrm{R}\left(T^{*}\right)$.
$\S 6.6 \# \mathbf{4}^{*}$ Hint: The fact that $I-T$ is a projection (i.e., $\left.(I-T)^{2}=I-T\right)$ follows from part E2 of the first exam. The fact that $I-T$ is self-adjoint follows from the fact that $T$ is self-adjoint. The fact that $I-T$ is an orthogonal projection follows from Exercise 6 of this section.
$\S 6.6 \# 6$ Note that a projection $T: \mathrm{V} \rightarrow \mathrm{V}$ has only two possible eigenvalues: 0 and 1. Indeed, if $x$ is a nonzero vector and $\lambda$ is a scalar such that $T(x)=\lambda x$, then $T^{2}(x)=\lambda^{2} x$ but also $T^{2}(x)=\lambda x$ since $T^{2}=T$. Therefore, $\lambda^{2}=\lambda$, which has only two solutins $\lambda_{1}=0$ and $\lambda_{2}=1$.

If $T$ is normal, then we can apply the Spectral Theorem to find orthogonal projections $T_{1}: \mathrm{V} \rightarrow \mathrm{V}$ and $T_{2}: \mathrm{V} \rightarrow \mathrm{V}$ such that $T=\lambda_{1} T_{1}+\lambda_{2} T_{2}$. But $\lambda_{1}=0$ and $\lambda_{2}=1$, so $T=T_{2}$ !

## §7.1\#7abcd

(a) We need to show that for every positive integer $k$, we have $\mathrm{N}\left(U^{k}\right) \subseteq \mathrm{N}\left(U^{k+1}\right)$. Well, if $U^{k}(x)=0$ then $U^{k+1}(x)=U\left(U^{k}(x)\right)=U(0)=0$.
(c) First note that the hypothesis $\operatorname{rank}\left(U^{k+1}\right)=\operatorname{rank}\left(U^{k}\right)$ implies that $\mathrm{N}\left(U^{k+1}=\right.$ $\mathrm{N}\left(U^{k}\right)$. Indeed, it follows from the Dimension Theorem that $\operatorname{dim}\left(\mathrm{N}\left(U^{k+1}\right)\right)=$ $\operatorname{dim}\left(\mathrm{N}\left(U^{k}\right)\right)$ and since $\mathrm{N}\left(U^{k}\right) \subseteq \mathrm{N}\left(U^{k+1}\right)$ by part (a), it follows that $\mathrm{N}\left(U^{k+1}=\right.$ $\mathrm{N}\left(U^{k}\right)$.
I will now show that if $\mathrm{N}\left(U^{k+1}\right)=\mathrm{N}\left(U^{k}\right)$ then $\mathrm{N}\left(U^{n}\right)=\mathrm{N}\left(U^{k}\right)$ for all positive integers $n \geq k$.

The proof is by induction on $n \geq k$. The base case ( $n=k$ ) just says that $\mathrm{N}\left(U^{k}\right)=\mathrm{N}\left(U^{k}\right)$, which is trivially true.
For the successor step $(n \rightarrow n+1)$, suppose that $\mathbf{N}\left(U^{k+1}\right)=\mathbf{N}\left(U^{k}\right)$ and that $\mathrm{N}\left(U^{n}\right)=\mathrm{N}\left(U^{k}\right)$. Since $U^{n+1}(x)=U^{n}(U(x))$, we see that

$$
\mathbf{N}\left(U^{n+1}\right)=\left\{x \in \mathrm{~V}: U(x) \in \mathrm{N}\left(U^{n}\right)\right\} .
$$

Since $\mathbf{N}\left(U^{n}\right)=\mathbf{N}\left(U^{k}\right)$ by the induction hypothesis, we see that

$$
\mathrm{N}\left(U^{n+1}\right)=\left\{x \in \mathrm{~V}: U(x) \in \mathrm{N}\left(U^{k}\right)\right\}=\mathrm{N}\left(U^{k+1}\right)
$$

Because $\mathrm{N}\left(U^{k+1}\right)=\mathrm{N}\left(U^{k}\right)$, we conclude that $\mathrm{N}\left(U^{n+1}\right)=\mathrm{N}\left(U^{k}\right)$.
(b) By part (a) and the Dimension Theorem, for all positive integers $n \geq k$, we have

$$
\operatorname{rank}\left(U^{n}\right)=\operatorname{rank}\left(U^{k}\right) \quad \text { iff } \quad \operatorname{nullity}\left(U^{n}\right)=\operatorname{nullity}\left(U^{k}\right) \quad \text { iff } \quad \mathrm{N}\left(U^{n}\right)=\mathrm{N}\left(U^{k}\right),
$$

where the last equality is because we know that $\mathrm{N}\left(U^{k}\right) \subseteq \mathrm{N}\left(U^{n}\right)$ by part (a). So part (b) follows immediately from part (c) above.
(d) By definition, $x \in \mathrm{~K}_{\lambda}$ if and only if $x \in \mathrm{~N}(T-\lambda I)^{n}$ for some positive integer $n$. By part (a) (with $U=T-\lambda I$ ) we have

$$
\mathrm{N}(T-\lambda I) \subseteq \mathrm{N}(T-\lambda I)^{2} \subseteq \mathrm{~N}(T-\lambda I)^{3} \subseteq \cdots
$$

and, by part (c), if for any positive integer $m$ we have

$$
\mathrm{N}(T-\lambda I)^{m+1}=\mathrm{N}(T-\lambda I)^{m}
$$

then the sequence stabilizes from that point on. So then, if $x \in \mathrm{~N}(T-\lambda I)^{n}$, then either $n \leq m$ and $x \in \mathrm{~N}(T-\lambda I)^{n} \subseteq \mathrm{~N}(T-\lambda I)^{m}$, or else $n>m$ and $x \in$ $\mathrm{N}(T-\lambda I)^{n}=\mathrm{N}(T-\lambda I)^{m}$. Therefore, $\mathrm{K}_{\lambda} \subseteq \mathrm{N}(T-\lambda I)^{m}$ and since we necessarily have $\mathrm{N}(T-\lambda I)^{m} \subseteq \mathrm{~K}_{\lambda}$ by definition of $\mathrm{K}_{\lambda}$, we conclude that $\mathrm{N}(T-\lambda I)^{m}=\mathrm{K}_{\lambda}$.

