
Homework Notes — Week 8

Math 24 — Spring 2014

§6.4#5 Suppose that T is normal. I will show that T − cI is normal too. By
Theorem 6.11(a,b,e), we have

(T − cI)∗ = T ∗ − cI.

Therefore,

(T − cI)(T − cI)∗ = (T − cI)(T ∗ − cI) = TT ∗ − cT ∗ − cT + ccI

and
(T − cI)∗(T − cI) = (T ∗ − cI)(T − cI) = T ∗T − cT ∗ − cT + ccI.

Since T is normal, TT ∗ = T ∗T and we immediately see that (T − cI) is normal too.

§6.4#9* Theorem. If T is a normal operator on a finite dimensional inner prod-
uct space, then N(T ) = N(T ∗) and R(T ) = R(T ∗).

Proof. The fact that N(T ) = N(T ∗) is a consequence of Theorem 6.15(a), which says
that ‖T (x)‖ = ‖T ∗(x)‖ for all x. Therefore,

T (x) = 0 iff ‖T (x)‖ = 0 iff ‖T ∗(x)‖ = 0 iff T ∗(x) = 0

or, equivalently,
x ∈ N(T ) if and only if x ∈ N(T ∗),

which is the same as saying that N(T ) = N(T ∗).
From, Exercise 12 of Section 6.3, we know that R(T )⊥ = N(T ∗) and R(T ∗)⊥ =

N(T ). Since (W⊥)⊥ = W by Theorem 6.7, we see that R(T ) = N(T ∗)⊥ = N(T )⊥ =
R(T ∗).

§6.6#4* Hint : The fact that I − T is a projection (i.e., (I − T )2 = I − T ) follows
from part E2 of the first exam. The fact that I − T is self-adjoint follows from the
fact that T is self-adjoint. The fact that I − T is an orthogonal projection follows
from Exercise 6 of this section.
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§6.6#6 Note that a projection T : V → V has only two possible eigenvalues: 0
and 1. Indeed, if x is a nonzero vector and λ is a scalar such that T (x) = λx, then
T 2(x) = λ2x but also T 2(x) = λx since T 2 = T . Therefore, λ2 = λ, which has only
two solutins λ1 = 0 and λ2 = 1.

If T is normal, then we can apply the Spectral Theorem to find orthogonal pro-
jections T1 : V → V and T2 : V → V such that T = λ1T1 + λ2T2. But λ1 = 0 and
λ2 = 1, so T = T2!

§7.1#7abcd

(a) We need to show that for every positive integer k, we have N(Uk) ⊆ N(Uk+1).
Well, if Uk(x) = 0 then Uk+1(x) = U(Uk(x)) = U(0) = 0.

(c) First note that the hypothesis rank(Uk+1) = rank(Uk) implies that N(Uk+1 =
N(Uk). Indeed, it follows from the Dimension Theorem that dim(N(Uk+1)) =
dim(N(Uk)) and since N(Uk) ⊆ N(Uk+1) by part (a), it follows that N(Uk+1 =
N(Uk).

I will now show that if N(Uk+1) = N(Uk) then N(Un) = N(Uk) for all positive
integers n ≥ k.

The proof is by induction on n ≥ k. The base case (n = k) just says that
N(Uk) = N(Uk), which is trivially true.

For the successor step (n → n + 1), suppose that N(Uk+1) = N(Uk) and that
N(Un) = N(Uk). Since Un+1(x) = Un(U(x)), we see that

N(Un+1) = {x ∈ V : U(x) ∈ N(Un)}.

Since N(Un) = N(Uk) by the induction hypothesis, we see that

N(Un+1) = {x ∈ V : U(x) ∈ N(Uk)} = N(Uk+1).

Because N(Uk+1) = N(Uk), we conclude that N(Un+1) = N(Uk).

(b) By part (a) and the Dimension Theorem, for all positive integers n ≥ k, we have

rank(Un) = rank(Uk) iff nullity(Un) = nullity(Uk) iff N(Un) = N(Uk),

where the last equality is because we know that N(Uk) ⊆ N(Un) by part (a). So
part (b) follows immediately from part (c) above.
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(d) By definition, x ∈ Kλ if and only if x ∈ N(T − λI)n for some positive integer n.
By part (a) (with U = T − λI) we have

N(T − λI) ⊆ N(T − λI)2 ⊆ N(T − λI)3 ⊆ · · ·

and, by part (c), if for any positive integer m we have

N(T − λI)m+1 = N(T − λI)m

then the sequence stabilizes from that point on. So then, if x ∈ N(T − λI)n,
then either n ≤ m and x ∈ N(T − λI)n ⊆ N(T − λI)m, or else n > m and x ∈
N(T −λI)n = N(T −λI)m. Therefore, Kλ ⊆ N(T −λI)m and since we necessarily
have N(T − λI)m ⊆ Kλ by definition of Kλ, we conclude that N(T − λI)m = Kλ.
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