Homework Notes — Week 8

Math 24 — Spring 2014

86.4#5 Suppose that T is normal. I will show that T" — ¢l is normal too. By
Theorem 6.11(a,b,e), we have

(T —cl)*=T"—¢l.
Therefore,
(T—c)(T—c)* = (T —cI)(T"—¢l)=TT" — T —¢T + ccl
and
(T —cD)(T—cl)=(T"—¢I)(T —¢cl)=T"T — T* —¢T + cel.

Since T is normal, TT* = T*T and we immediately see that (7" — ¢I) is normal too.

8§6.4#9* Theorem. If T is a normal operator on a finite dimensional inner prod-
uct space, then N(7') = N(7*) and R(T") = R(T™).

Proof. The fact that N(T') = N(T™) is a consequence of Theorem 6.15(a), which says
that || T(x)|| = || T*(x)]|| for all z. Therefore,

T(x)=0 iff [|T(x)] =0 iff |T*(x)]=0 iff T"(z)=0

or, equivalently,
x € N(T) if and only if =z € N(T™),

which is the same as saying that N(7") = N(7™).

From, Exercise 12 of Section 6.3, we know that R(T)* = N(T™) and R(T*)* =
N(T). Since (W)t = W by Theorem 6.7, we see that R(T") = N(T*)* = N(T)*+ =
R(T™). O

§6.6#44* Hint: The fact that I — T is a projection (i.e., (I —T)* = I —T) follows
from part E2 of the first exam. The fact that I — T is self-adjoint follows from the
fact that T is self-adjoint. The fact that [ — T is an orthogonal projection follows
from Exercise 6 of this section.



86.64#6 Note that a projection T": V — V has only two possible eigenvalues: 0
and 1. Indeed, if x is a nonzero vector and A is a scalar such that 7'(x) = Az, then
T?(z) = Az but also T?(z) = Az since T? = T. Therefore, \* = )\, which has only
two solutins A\ = 0 and A\, = 1.

If T is normal, then we can apply the Spectral Theorem to find orthogonal pro-
jections T} : V — V and T, : V — V such that T = \{T7 + A7T5. But A\ = 0 and
A=1s0T =T5!

87.1#7abcd

(a) We need to show that for every positive integer k, we have N(U*) C N(U*+1).
Well, if U*(x) = 0 then U™ (x) = U(U*(x)) = U(0) = 0.

(c) First note that the hypothesis rank(U**!) = rank(U*) implies that N(U**1 =
N(U*). Indeed, it follows from the Dimension Theorem that dim(N(U**!)) =
dim(N(U*)) and since N(U*) C N(U*™!) by part (a), it follows that N(U**! =
N(U*).

[ will now show that if N(U**!) = N(U*) then N(U™) = N(U*) for all positive
integers n > k.

The proof is by induction on n > k. The base case (n = k) just says that
N(U*) = N(U*), which is trivially true.

For the successor step (n — n + 1), suppose that N(U**1) = N(U*) and that
N(U™) = N(U¥). Since U"1(x) = U™(U(z)), we see that

NU™™) = {z eV :U(x) e NU")}.
Since N(U™) = N(U*) by the induction hypothesis, we see that
N(U™™) = {x € V:U(z) € N(U*)} = N(U*).
Because N(U*1) = N(U*), we conclude that N(U"1) = N(U*).
(b) By part (a) and the Dimension Theorem, for all positive integers n > k, we have
rank(U") = rank(U") iff nullity(U") = nullity (U*) iff N(U™) = N(U"),

where the last equality is because we know that N(U*) € N(U™) by part (a). So
part (b) follows immediately from part (c) above.



(d) By definition, x € K, if and only if € N(T" — AI)" for some positive integer n.
By part (a) (with U =T — AI) we have

N(T — X)) CN(T —A?CN(T - M3 C---
and, by part (c), if for any positive integer m we have
N(T — A" = N(T — XI)™

then the sequence stabilizes from that point on. So then, if v € N(T"— A\I)",
then either n < m and x € N(T'— AI)" C N(T'— AI)™, or else n > m and = €
N(T—AI)" = N(T'—AI)™. Therefore, Ky C N(T'—AI)™ and since we necessarily
have N(T'— AI)™ C K, by definition of K, we conclude that N(T"— AI)™ = K.



