
Homework Notes — Week 7

Math 24 — Spring 2014

§6.1#4

(a) Complete the proof in example 5 that 〈·, ·〉 is an inner product (the Frobenius
inner product) on Mn×n(F ). In the example properties (a) and (d) have already
been verified, so we need to check that (b) and (c) also hold.

To see that (b) holds, suppose that A,B ∈Mn×n(F ) and a ∈ F . Then

〈aA,B〉 = tr(B∗(aA)),

= tr(aB∗A),

= a tr(B∗A),

= a〈A,B〉,

where the third equality holds by linearity of the trace, so property (c) holds.

For property (c) holds, we compute both 〈A,B〉 and 〈B,A〉,

〈A,B〉 = tr(B∗A),

=
n∑
i=1

(B∗A)i,i,

=
n∑
i=1

n∑
k=1

(B∗)i,kAk,i,

=
n∑
i=1

n∑
k=1

Bk,iAk,i,

where the final equality follows because the matrixB∗ is defined by (B∗)i,k = Bk,i.
An identical calculation gives that 〈B,A〉 =

∑n
i=1

∑n
k=1Ak,iBk,i and since com-

plex conjugation has the following three properties: z + z′ = z+ z′, zz = zz′ and
z = z for all complex numbers z, z′ ∈ C, we have that
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〈B,A〉 =
n∑
i=1

n∑
k=1

Ak,iBk,i,

=
n∑
i=1

n∑
k=1

Ak,iBk,i,

=
n∑
i=1

n∑
k=1

Ak,iBk,i,

=
n∑
i=1

n∑
k=1

Ak,iBk,i,

=
n∑
i=1

n∑
k=1

Bk,iAk,i,

= 〈A,B〉.

(b) Use the Frobenius inner product to compute ‖A‖ , ‖B‖ and 〈A,B〉 for

A =

(
1 2 + i
3 i

)
and B =

(
1 + i 0
i −i

)
.

By definition ||X|| =
√
〈X,X〉 for all matrices X ∈ Mn×n(F ), so we star by
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computing 〈A,A〉, 〈B,B〉,

A∗A =

(
1 3

2− i −i

)(
1 2 + i
3 i

)
,

=

(
10 2 + 4i

2− 4i 6

)
,

B∗B =

(
1− i −i

0 i

)(
1 + i 0
i −i

)
,

=

(
3 −1
−1 1

)
,

B∗A =

(
1− i −i

0 i

)(
1 2 + i
3 i

)
,

=

(
1− 4i 4− i

3i 1 + i

)
.

Now we are in a position to compute the various inner products involved,

〈A,A〉 = tr(A∗A),

= 10 + 6,

= 16,

〈B,B〉 = tr(B∗B),

= 3 + 1,

= 4,

〈A,B〉 = tr(B∗A),

= 1− 4i+ 1 + i,

= 2− 3i.

So finally we can compute both ‖A‖ and ‖B‖,
‖A‖ =

√
16 = 4, and ‖B‖ =

√
4 = 2.

§6.1#12* Theorem. Let V be an inner product space and let {v1, . . . , vk} be an
orthogonal set in V . Then, for any scalars a1, . . . , ak:∥∥∥∥∥

k∑
i=1

aivi

∥∥∥∥∥
2

=
k∑
i=1

|ai|2 · ‖vi‖2 .
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Proof. With vi, ai described as above, we compute
∥∥∥∑k

i=1 aivi

∥∥∥2 =
〈∑k

i=1 aivi,
∑k

j=1 ajvj

〉
using the linearity in the first variable, then and conjugate-linearity in the second
(Theorem 6.1), namely〈

k∑
i=1

aivi,
k∑
j=1

ajvj

〉
=

k∑
i=1

ai

〈
vi,

k∑
j=1

ajvj

〉
,

=
k∑
i=1

k∑
j=1

aiaj〈vi, vj〉.

But 〈vi, vj〉 = 1 if j = i and 0 if i 6= j.Therefore for any fixed i with 1 ≤ i ≤ k we
have ∥∥∥∥∥

k∑
i=1

aivi

∥∥∥∥∥
2

=

〈
k∑
i=1

aivi,
k∑
j=1

ajvj

〉
,

=
k∑
i=1

k∑
j=1

aiaj〈vi, vj〉,

=
k∑
i=1

aiai〈vi, vi〉,

=
k∑
i=1

|ai|2 ‖vi‖2 .

§6.1#17 Let T be a linear operator on an inner product space V , and suppose
that ‖T (x)‖ = ‖x‖ for all x ∈ V . Then T is one-to-one.

Proof. We appeal to the fact that T is one-to-one if and only if N(T ) = {0} (Theorem
2.4). So suppose that x ∈ N(T ), i.e. that T (x) = 0. Then we must have

‖x‖ = ‖T (x)‖ = ‖0‖ = 0,

but the only vector with ‖x‖ = 0 is the zero vector, so x = 0. So N(T ) = {0} and
therefore T is one-to-one.
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§6.2#2 In each part, apply the Gram-Schmidt process to the given subset S of the
inner product space V to obtain an orthogonal basis for span(S). Then normalize the
vectors to obtain an orthonormal basis for span(S), and finally compute the Fourier
coefficients of the given vector relative to β. Finally use Theorem 6.5 to verify the
result.

(b) V = R3, S =


 1

1
1

 ,

 0
1
1

 ,

 0
0
1

 and x =

 1
0
1


To initialize the Gram-Schmidt process we take v1 =

 1
1
1

 and then apply the

next step to obtain v2 as

v2 =

 0
1
1

−
〈 0

1
1

 ,

 1
1
1

〉
∥∥∥∥∥∥
 1

1
1

∥∥∥∥∥∥
2

 1
1
1

 ,

=

 0
1
1

− 2

3

 1
1
1

 ,

=
1

3

 −2
1
1

 .
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Next we obtain v3 as

v3 =

 0
0
1

−
〈 0

0
1

 ,

 1
1
1

〉
∥∥∥∥∥∥
 1

1
1

∥∥∥∥∥∥
2

 1
1
1

−
〈 0

0
1

 , 1
3

 −2
1
1

〉
∥∥∥∥∥∥1
3

 −2
1
1

∥∥∥∥∥∥
2

1

3

 −2
1
1

 ,

=

 0
0
1

− 1

3

 1
1
1

− 3

2
· 1

3
· 1

3

 −2
1
1

 ,

=

 0− 1
3

+ 1
3

0− 1
3
− 1

6

1− 1
3
− 1

6

 ,

=
1

2

 0
−1
1

 .

The set {v1, v2, v3} is an orthogonal basis, so to obtain an orthonormal basis by
setting wi = 1

‖vi‖vi for i = 1, 2, 3 then these vectors will work, specifically

{
1

‖v1‖
v1,

1

‖v2‖
v2,

1

‖v3‖
v3

}
=

 1√
3

 1
1
1

 ,
1√
6

 −2
1
1

 ,
1√
2

 0
−1
1

 ,


is an orthonormal basis for span(S).

Now we compute the inner products 〈x,wi〉 for i = 1, 2, 3,
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〈x,w1〉 =

〈 1
0
1

 ,
1√
3

 1
1
1

〉 ,
= 1 · 1√

3
+ 0 · 1√

3
+ 1 · 1√

3
,

=
2√
3
,

〈x,w2〉 =

〈 1
0
1

 ,
1√
6

 −2
1
1

〉 ,
= 1 · −2√

6
+ 0 · 1√

6
+ 1 · 1√

6
,

=
−1√

6
,

〈x,w3〉 =

〈 1
0
1

 ,
1√
2

 0
−1
1

〉 ,
= 1 · 0 + 0 · −1√

2
+ 1 · 1√

2
,

=
1√
2
.

Now we are supposed to verify Theorem 6.5, specifically to check that

x = 〈x,w1〉w1 + 〈x,w2〉w2 + 〈x,w3〉w3.

Well we can commute the right hand side of this equation directly,
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〈x,w1〉w1 + 〈x,w2〉w2 + 〈x,w3〉w3 =
2√
3

1√
3

 1
1
1

+
1√
6

 −2
1
1

+
1√
2

 0
−1
1

 ,

=

 2
3

+ 2
6

+ 0
2
3
− 1

6
− 1

2
2
3
− 1

6
+ 1

2

 ,

=

 1
0
1

 ,

= x.

(d) V = span(S) where S =


 1

i
0

 ,

 1− i
2
4i

 and x =

 3 + i
4i
−4

 .

To start we set v1 =

 1
i
0

 and then compute v2 by

v2 =

 1− i
2
4i

−
〈 1− i

2
4i

 ,

 1
i
0

〉
〈 1

i
0

 ,

 1
i
0

〉
 1

i
0

 ,

=

 1− i
2
4i

− (1− i) · 1 + 2 · i+ 4i · 0
1 · 1 + i · i+ 0 · 0

 1
i
0

 ,

=

 1− i
2
4i

− 1− i− 2i

1− i2

 1
i
0

 ,

=

 1− i
2
4i

− 1− 3i

2

 1
i
0

 ,
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=

 1− i− 1
2
(1− 3i)

2− 1
2
(i− 3i2)
4i

 ,

=

 1
2

+ 1
2
i

1
2
− 1

2
i

4i

 ,

=
1

2

 1 + i
1− i

8i

 .

If we now normalize the vectors v1, v2 we get w1 = 1√
2

 1
i
0

 and w2 = 1
2
√
17

 1 + i
1− i

8i

 .

Now we compute 〈x,w1〉 and 〈x,w2〉 ,

〈x,w1〉 =

〈 3 + i
4i
−4

 ,
1√
2

 1
i
0

〉 ,
=

1√
2

(3 + i · 1 + 4i · i+ (−4) · 0),

=
1√
2

(3 + i+ 4),

=
1√
2

(7 + i),

〈x,w2〉 =

〈 3 + i
4i
−4

 ,
1

2
√

17

 1 + i
1− i

8i

〉 ,
=

1

2
√

17
((3 + i) · (1 + i) + 4i · (1− i)− 4 · 8i),

=
1

2
√

17
((3 + i)(1− i) + 4i(1 + i) + 32i),
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=
1

2
√

17
(3− 3i+ i− i2 + 4i+ 4i2 + 32i),

=
1

2
√

17
· 34i,

=
34i

2
√

17
.

Now again we check that x = 〈x,w1〉w1 + 〈x,w2〉w2 in accordance with Theorem
6.5,

〈x,w1〉w1 + 〈x,w2〉w2 =
1√
2

(7 + i)
1√
2

 1
i
0

+
34i

2
√

17

1

2
√

17

 1 + i
1− i

8i

 ,

=
7 + i

2

 1
i
0

+
34i

2 · 34

 1 + i
1− i

8i

 ,

=
1

2

 7 + i
−1 + 7i

0

+
1

2

 −1 + i
1 + i
−8

 ,

=
1

2

 7 + i− 1 + i
−1 + 7i+ 1 + i

−8

 ,

=
1

2

 6 + 2i
8i
−8

 ,

=

 3 + i
4i
−4

 ,

= x.

§6.2#10 Let W = span


 i

0
1

 in C3. Find orthonormal bases for W and

W⊥. The set


 i

0
1

 is a basis for W by construction, hence by normalizing this
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vector we obtain an orthonormal basis of W , namely

 1√
2

 i
0
1

.

a vector

 x
y
z

 ∈ C3 is in W⊥ if and only if

0 =

〈 x
y
z

 ,

 i
0
1

〉 = −ix+ z,

so two such vectors are

 1
0
i

 and

 0
1
0

. These two vectors are orthogonal,

linearly independent, and span W⊥ so that


 1

0
i

 ,

 0
1
0

 is a basis for W⊥.

Normalizing these vectors we obtain the orthonormal basis of W⊥ 1√
2

 1
0
i

 ,

 0
1
0

 .

§6.3#2 For each oft he following inner product space V (over F ) and linear trans-
formations g : V → F , find a vector y such that g(x) = 〈x, y〉 for all x ∈ V

(b) C = C2, g

(
z1
z2

)
= z1 − z2.

Let y =

(
1
−2

)
, then for any

(
z1
z2

)
∈ C2 we have

〈(
z1
z2

)
,

(
1
−2

)〉
= z1 · 1 + z2 · (−2),

= z1 − 2z2,

= g

(
z1
z2

)
.
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§6.3#3 For each of the following inner product space V and linear operators T on
V , evaluate T ∗ at the given vector in V .

(b) V = C2, T

(
z1
z2

)
=

(
2z1 + iz2
(1− i)z1

)
and x =

(
3− i
1 + 2i

)
.

First note that T

(
z1
z2

)
=

(
2 i

1− i 0

)(
z1
z2

)
for all vectors

(
z1
z2

)
∈ C2.

Let β =

{(
1
0

)
,

(
0
1

)}
, i.e. the standard basis of C2, then [T ]β =

(
2 i

1− i 0

)
.

Since [T ∗]β = [T ]∗β we have that

[T ∗]β =

(
2 i

1− i 0

)∗
=

(
2 1 + i
−i 0

)
.

Now we remark that for any v ∈ C we have v = [v]β, so

T ∗
(
z1
z2

)
=

[
T ∗
(
z1
z2

)]
β

,

= [T ∗]β

[(
z1
z2

)]
β

,

=

(
2 1 + i
−i 0

)(
z1
z2

)
.

So we can compute T ∗ on all vectors of C2 by the above matrix formula, therefore

T

(
3− i
1 + 2i

)
=

(
2 1 + i
−i 0

)(
3− i
1 + 2i

)
,

=

(
2 · (3− i) + (1 + i) · (1 + 2i)
−i · (3− i) + 0 · (1 + 2i)

)
,

=

(
6− 2i+ 1 + 2i+ i+ 2i2

−3i+ i2

)
,

=

(
5 + i
−1− 3i

)
,
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§6.3#12a* Theorem. Let V be an inner product space and let T be a linear
operator on V . Then R(T ∗)⊥ = N(T ).

Proof. We will show that following list of statements are all equivalent,

(i) x ∈ N(T ),

(ii) T (x) = 0,

(iii) 〈T (x), y〉 = 0 for all y ∈ V ,

(iv) 〈x, T ∗(y)〉 = 0 for all y ∈ V ,

(v) 〈x,w〉 = 0 for all w ∈ R(T ∗),

(vi) x ∈ R(T ∗)⊥,

so in particular once we’ve done this we have that N(T ) = R(T ∗)⊥ by the equivalence
of (i) and (vi).

That (i) and (ii) are equivalent is just the definition of N(T ). That (ii) and (iii)
are equivalent is just the observation that the only vector u ∈ V with 〈u, v〉 = 0 for
all v ∈ V is u = 0.

That (iii) and (iv) are equivalent is just the fact that for any vectors u, v ∈ V
we have 〈T (x), y〉 = 〈x, T ∗(y)〉 since T ∗ is the adjoint of T and this property is the
defining property of the adjoint.

The equivalence of (iv) and (v) follows form the fact that w ∈ R(T ∗) if and only
if w = T (y) for some y ∈ V .

Finally the equivalence of (v) and (vi) is just the definition of R(T ∗)⊥. So (i) and
(vi) are equivalent, which means exactly that R(T ∗)⊥ = N(T ).
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