# Homework Notes - Week 7 

## Math 24 - Spring 2014

## §6.1\#4

(a) Complete the proof in example 5 that $\langle\cdot, \cdot\rangle$ is an inner product (the Frobenius inner product) on $M_{n \times n}(F)$. In the example properties $(a)$ and $(d)$ have already been verified, so we need to check that (b) and (c) also hold.

To see that ( $b$ ) holds, suppose that $A, B \in M_{n \times n}(F)$ and $a \in F$. Then

$$
\begin{aligned}
\langle a A, B\rangle & =\operatorname{tr}\left(B^{*}(a A)\right), \\
& =\operatorname{tr}\left(a B^{*} A\right), \\
& =a \operatorname{tr}\left(B^{*} A\right), \\
& =a\langle A, B\rangle,
\end{aligned}
$$

where the third equality holds by linearity of the trace, so property ( $c$ ) holds.
For property $(c)$ holds, we compute both $\langle A, B\rangle$ and $\langle B, A\rangle$,

$$
\begin{aligned}
\langle A, B\rangle & =\operatorname{tr}\left(B^{*} A\right), \\
& =\sum_{i=1}^{n}\left(B^{*} A\right)_{i, i}, \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n}\left(B^{*}\right)_{i, k} A_{k, i}, \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n} \overline{B_{k, i}} A_{k, i},
\end{aligned}
$$

where the final equality follows because the matrix $B^{*}$ is defined by $\left(B^{*}\right)_{i, k}=\overline{B_{k, i}}$. An identical calculation gives that $\langle B, A\rangle=\sum_{i=1}^{n} \sum_{k=1}^{n} \overline{A_{k, i}} B_{k, i}$ and since complex conjugation has the following three properties: $\overline{z+z^{\prime}}=\bar{z}+\overline{z^{\prime}}, \overline{z z}=\bar{z} \overline{z^{\prime}}$ and $\overline{\bar{z}}=z$ for all complex numbers $z, z^{\prime} \in \mathbb{C}$, we have that

$$
\begin{aligned}
\overline{\langle B, A\rangle} & =\overline{\sum_{i=1}^{n} \sum_{k=1}^{n} \overline{A_{k, i}} B_{k, i}}, \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n} \overline{\overline{A_{k, i}} B_{k, i}}, \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n} \overline{\overline{A_{k, i}} B_{k, i}}, \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n} A_{k, i} \overline{B_{k, i}}, \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n} \overline{B_{k, i}} A_{k, i}, \\
& =\langle A, B\rangle .
\end{aligned}
$$

(b) Use the Frobenius inner product to compute $\|A\|,\|B\|$ and $\langle A, B\rangle$ for

$$
A=\left(\begin{array}{cc}
1 & 2+i \\
3 & i
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
1+i & 0 \\
i & -i
\end{array}\right)
$$

By definition $\|X\|=\sqrt{\langle X, X\rangle}$ for all matrices $X \in M_{n \times n}(F)$, so we star by
computing $\langle A, A\rangle,\langle B, B\rangle$,

$$
\begin{aligned}
A^{*} A & =\left(\begin{array}{cc}
1 & 3 \\
2-i & -i
\end{array}\right)\left(\begin{array}{cc}
1 & 2+i \\
3 & i
\end{array}\right) \\
& =\left(\begin{array}{cc}
10 & 2+4 i \\
2-4 i & 6
\end{array}\right) \\
B^{*} B & =\left(\begin{array}{cc}
1-i & -i \\
0 & i
\end{array}\right)\left(\begin{array}{cc}
1+i & 0 \\
i & -i
\end{array}\right) \\
& =\left(\begin{array}{cc}
3 & -1 \\
-1 & 1
\end{array}\right) \\
B^{*} A & =\left(\begin{array}{cc}
1-i & -i \\
0 & i
\end{array}\right)\left(\begin{array}{cc}
1 & 2+i \\
3 & i
\end{array}\right) \\
& =\left(\begin{array}{cc}
1-4 i & 4-i \\
3 i & 1+i
\end{array}\right)
\end{aligned}
$$

Now we are in a position to compute the various inner products involved,

$$
\begin{aligned}
\langle A, A\rangle & =\operatorname{tr}\left(A^{*} A\right) \\
& =10+6 \\
& =16 \\
\langle B, B\rangle & =\operatorname{tr}\left(B^{*} B\right) \\
& =3+1 \\
& =4 \\
\langle A, B\rangle & =\operatorname{tr}\left(B^{*} A\right) \\
& =1-4 i+1+i \\
& =2-3 i
\end{aligned}
$$

So finally we can compute both $\|A\|$ and $\|B\|$,

$$
\|A\|=\sqrt{16}=4, \text { and }\|B\|=\sqrt{4}=2 .
$$

$\S 6.1 \# 12^{*}$ Theorem. Let $V$ be an inner product space and let $\left\{v_{1}, \ldots, v_{k}\right\}$ be an orthogonal set in $V$. Then, for any scalars $a_{1}, \ldots, a_{k}$ :

$$
\left\|\sum_{i=1}^{k} a_{i} v_{i}\right\|^{2}=\sum_{i=1}^{k}\left|a_{i}\right|^{2} \cdot\left\|v_{i}\right\|^{2}
$$

Proof. With $v_{i}, a_{i}$ described as above, we compute $\left\|\sum_{i=1}^{k} a_{i} v_{i}\right\|^{2}=\left\langle\sum_{i=1}^{k} a_{i} v_{i}, \sum_{j=1}^{k} a_{j} v_{j}\right\rangle$ using the linearity in the first variable, then and conjugate-linearity in the second (Theorem 6.1), namely

$$
\begin{aligned}
\left\langle\sum_{i=1}^{k} a_{i} v_{i}, \sum_{j=1}^{k} a_{j} v_{j}\right\rangle & =\sum_{i=1}^{k} a_{i}\left\langle v_{i}, \sum_{j=1}^{k} a_{j} v_{j}\right\rangle, \\
& =\sum_{i=1}^{k} \sum_{j=1}^{k} a_{i} \overline{a_{j}}\left\langle v_{i}, v_{j}\right\rangle .
\end{aligned}
$$

But $\left\langle v_{i}, v_{j}\right\rangle=1$ if $j=i$ and 0 if $i \neq j$.Therefore for any fixed $i$ with $1 \leq i \leq k$ we have

$$
\begin{aligned}
\left\|\sum_{i=1}^{k} a_{i} v_{i}\right\|^{2} & =\left\langle\sum_{i=1}^{k} a_{i} v_{i}, \sum_{j=1}^{k} a_{j} v_{j}\right\rangle \\
& =\sum_{i=1}^{k} \sum_{j=1}^{k} a_{i} \overline{a_{j}}\left\langle v_{i}, v_{j}\right\rangle \\
& =\sum_{i=1}^{k} a_{i} \overline{a_{i}}\left\langle v_{i}, v_{i}\right\rangle \\
& =\sum_{i=1}^{k}\left|a_{i}\right|^{2}\left\|v_{i}\right\|^{2}
\end{aligned}
$$

$\S 6.1 \# 17$ Let $T$ be a linear operator on an inner product space $V$, and suppose that $\|T(x)\|=\|x\|$ for all $x \in V$. Then $T$ is one-to-one.

Proof. We appeal to the fact that $T$ is one-to-one if and only if $N(T)=\{0\}$ (Theorem 2.4). So suppose that $x \in N(T)$, i.e. that $T(x)=0$. Then we must have

$$
\|x\|=\|T(x)\|=\|0\|=0
$$

but the only vector with $\|x\|=0$ is the zero vector, so $x=0$. So $N(T)=\{0\}$ and therefore $T$ is one-to-one.
§6.2\#2 In each part, apply the Gram-Schmidt process to the given subset $S$ of the inner product space $V$ to obtain an orthogonal basis for $\operatorname{span}(S)$. Then normalize the vectors to obtain an orthonormal basis for $\operatorname{span}(S)$, and finally compute the Fourier coefficients of the given vector relative to $\beta$. Finally use Theorem 6.5 to verify the result.
(b) $V=\mathbb{R}^{3}, S=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ and $x=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$

To initialize the Gram-Schmidt process we take $v_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ and then apply the next step to obtain $v_{2}$ as

$$
\begin{aligned}
v_{2} & =\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)-\frac{\left\langle\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\rangle}{\left\|\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\|^{2}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& =\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)-\frac{2}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& =\frac{1}{3}\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

Next we obtain $v_{3}$ as

$$
\begin{aligned}
v_{3} & =\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)-\frac{\left\langle\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\rangle}{\left\|\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\|^{2}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\frac{\left\langle\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \frac{1}{3}\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)\right\rangle}{\left\|\frac{1}{3}\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)\right\|^{2}} \frac{1}{3}\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right) \\
& =\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)-\frac{1}{3}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\frac{3}{2} \cdot \frac{1}{3} \cdot \frac{1}{3}\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
0-\frac{1}{3}+\frac{1}{3} \\
0-\frac{1}{3}-\frac{1}{6} \\
1-\frac{1}{3}-\frac{1}{6}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)
\end{aligned}
$$

The set $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal basis, so to obtain an orthonormal basis by setting $w_{i}=\frac{1}{\left\|v_{i}\right\|} v_{i}$ for $i=1,2,3$ then these vectors will work, specifically

$$
\left\{\frac{1}{\left\|v_{1}\right\|} v_{1}, \frac{1}{\left\|v_{2}\right\|} v_{2}, \frac{1}{\left\|v_{3}\right\|} v_{3}\right\}=\left\{\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right),\right\}
$$

is an orthonormal basis for $\operatorname{span}(S)$.
Now we compute the inner products $\left\langle x, w_{i}\right\rangle$ for $i=1,2,3$,

$$
\begin{aligned}
\left\langle x, w_{1}\right\rangle & =\left\langle\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
1 \\
1
\end{array}\right)\right\rangle, \\
& =1 \cdot \frac{1}{\sqrt{3}}+0 \cdot \frac{1}{\sqrt{3}}+1 \cdot \frac{1}{\sqrt{3}}, \\
& =\frac{2}{\sqrt{3}}, \\
\left\langle x, w_{2}\right\rangle & =\left\langle\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)\right\rangle, \\
& =1 \cdot \frac{-2}{\sqrt{6}}+0 \cdot \frac{1}{\sqrt{6}}+1 \cdot \frac{1}{\sqrt{6}}, \\
& =\frac{-1}{\sqrt{6}}, \\
\left\langle x, w_{3}\right\rangle & =\left\langle\left(\begin{array}{c}
1 \\
0 \\
1
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)\right\rangle, \\
& =1 \cdot 0+0 \cdot \frac{-1}{\sqrt{2}}+1 \cdot \frac{1}{\sqrt{2}}, \\
& =\frac{1}{\sqrt{2}} .
\end{aligned}
$$

Now we are supposed to verify Theorem 6.5, specifically to check that

$$
x=\left\langle x, w_{1}\right\rangle w_{1}+\left\langle x, w_{2}\right\rangle w_{2}+\left\langle x, w_{3}\right\rangle w_{3} .
$$

Well we can commute the right hand side of this equation directly,

$$
\begin{aligned}
\left\langle x, w_{1}\right\rangle w_{1}+\left\langle x, w_{2}\right\rangle w_{2}+\left\langle x, w_{3}\right\rangle w_{3} & =\frac{2}{\sqrt{3}} \frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+\frac{1}{\sqrt{6}}\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)+\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right), \\
& =\left(\begin{array}{c}
\frac{2}{3}+\frac{2}{6}+0 \\
\frac{2}{3}-\frac{1}{6}-\frac{1}{2} \\
\frac{2}{3}-\frac{1}{6}+\frac{1}{2}
\end{array}\right) \\
& =\left(\begin{array}{c}
1 \\
0 \\
1
\end{array}\right) \\
& =x .
\end{aligned}
$$

(d) $V=\operatorname{span}(S)$ where $S=\left\{\left(\begin{array}{c}1 \\ i \\ 0\end{array}\right),\left(\begin{array}{c}1-i \\ 2 \\ 4 i\end{array}\right)\right\}$ and $x=\left(\begin{array}{c}3+i \\ 4 i \\ -4\end{array}\right)$.

To start we set $v_{1}=\left(\begin{array}{c}1 \\ i \\ 0\end{array}\right)$ and then compute $v_{2}$ by

$$
\begin{aligned}
v_{2} & =\left(\begin{array}{c}
1-i \\
2 \\
4 i
\end{array}\right)-\frac{\left\langle\left(\begin{array}{c}
1-i \\
2 \\
4 i
\end{array}\right),\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right)\right\rangle}{\left\langle\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right)\right\rangle}\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right), \\
& =\left(\begin{array}{c}
1-i \\
2 \\
4 i
\end{array}\right)-\frac{(1-i) \cdot \overline{1}+2 \cdot \bar{i}+4 i \cdot \overline{0}}{1 \cdot \overline{1}+i \cdot \bar{i}+0 \cdot \overline{0}}\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right), \\
& =\left(\begin{array}{c}
1-i \\
2 \\
4 i
\end{array}\right)-\frac{1-i-2 i}{1-i^{2}}\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right) \\
& =\left(\begin{array}{c}
1-i \\
2 \\
4 i
\end{array}\right)-\frac{1-3 i}{2}\left(\begin{array}{l}
1 \\
i \\
0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{c}
1-i-\frac{1}{2}(1-3 i) \\
2-\frac{1}{2}\left(i-3 i^{2}\right) \\
4 i
\end{array}\right), \\
& =\left(\begin{array}{c}
\frac{1}{2}+\frac{1}{2} i \\
\frac{1}{2}-\frac{1}{2} i \\
4 i
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{c}
1+i \\
1-i \\
8 i
\end{array}\right) .
\end{aligned}
$$

If we now normalize the vectors $v_{1}, v_{2}$ we get $w_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ i \\ 0\end{array}\right)$ and $w_{2}=\frac{1}{2 \sqrt{17}}\left(\begin{array}{c}1+i \\ 1-i \\ 8 i\end{array}\right)$.
Now we compute $\left\langle x, w_{1}\right\rangle$ and $\left\langle x, w_{2}\right\rangle$,

$$
\begin{aligned}
\left\langle x, w_{1}\right\rangle & =\left\langle\left(\begin{array}{c}
3+i \\
4 i \\
-4
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
i \\
0
\end{array}\right)\right\rangle \\
& =\frac{1}{\sqrt{2}}(3+i \cdot \overline{1}+4 i \cdot \bar{i}+(-4) \cdot 0), \\
& =\frac{1}{\sqrt{2}}(3+i+4), \\
& =\frac{1}{\sqrt{2}}(7+i), \\
\left\langle x, w_{2}\right\rangle & =\left\langle\left(\begin{array}{c}
3+i \\
4 i \\
-4
\end{array}\right), \frac{1}{2 \sqrt{17}}\left(\begin{array}{c}
1+i \\
1-i \\
8 i
\end{array}\right)\right\rangle \\
& =\frac{1}{2 \sqrt{17}}((3+i) \cdot(\overline{1+i})+4 i \cdot(\overline{1-i})-4 \cdot \overline{8 i}), \\
& =\frac{1}{2 \sqrt{17}}((3+i)(1-i)+4 i(1+i)+32 i),
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2 \sqrt{17}}\left(3-3 i+i-i^{2}+4 i+4 i^{2}+32 i\right) \\
& =\frac{1}{2 \sqrt{17}} \cdot 34 i \\
& =\frac{34 i}{2 \sqrt{17}}
\end{aligned}
$$

Now again we check that $x=\left\langle x, w_{1}\right\rangle w_{1}+\left\langle x, w_{2}\right\rangle w_{2}$ in accordance with Theorem 6.5 ,

$$
\begin{aligned}
\left\langle x, w_{1}\right\rangle w_{1}+\left\langle x, w_{2}\right\rangle w_{2} & =\frac{1}{\sqrt{2}}(7+i) \frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
i \\
0
\end{array}\right)+\frac{34 i}{2 \sqrt{17}} \frac{1}{2 \sqrt{17}}\left(\begin{array}{c}
1+i \\
1-i \\
8 i
\end{array}\right) \\
& =\frac{7+i}{2}\left(\begin{array}{c}
1 \\
i \\
0
\end{array}\right)+\frac{34 i}{2 \cdot 34}\left(\begin{array}{c}
1+i \\
1-i \\
8 i
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{c}
7+i \\
-1+7 i \\
0
\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}
-1+i \\
1+i \\
-8
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{c}
7+i-1+i \\
-1+7 i+1+i \\
-8
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{c}
6+2 i \\
8 i \\
-8
\end{array}\right) \\
& =\left(\begin{array}{c}
3+i \\
4 i \\
-4
\end{array}\right) \\
& =x
\end{aligned}
$$

$\S 6.2 \# 10$ Let $W=\operatorname{span}\left\{\left(\begin{array}{l}i \\ 0 \\ 1\end{array}\right)\right\}$ in $\mathbb{C}^{3}$. Find orthonormal bases for $W$ and $W^{\perp}$. The set $\left\{\left(\begin{array}{l}i \\ 0 \\ 1\end{array}\right)\right\}$ is a basis for $W$ by construction, hence by normalizing this
vector we obtain an orthonormal basis of $W$, namely $\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{c}i \\ 0 \\ 1\end{array}\right)\right\}$.
a vector $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in \mathbb{C}^{3}$ is in $W^{\perp}$ if and only if

$$
0=\left\langle\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right),\left(\begin{array}{l}
i \\
0 \\
1
\end{array}\right)\right\rangle=-i x+z
$$

so two such vectors are $\left(\begin{array}{c}1 \\ 0 \\ i\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$. These two vectors are orthogonal,
linearly independent, and span $W^{\perp}$ so that $\left\{\left(\begin{array}{l}1 \\ 0 \\ i\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}$ is a basis for $W^{\perp}$.
Normalizing these vectors we obtain the orthonormal basis of $W^{\perp}$

$$
\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
i
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\}
$$

§6.3\#2 For each oft he following inner product space $V$ (over $F$ ) and linear transformations $g: V \rightarrow F$, find a vector $y$ such that $g(x)=\langle x, y\rangle$ for all $x \in V$
(b) $C=\mathbb{C}^{2}, g\binom{z_{1}}{z_{2}}=z_{1}-z_{2}$.

Let $y=\binom{1}{-2}$, then for any $\binom{z_{1}}{z_{2}} \in \mathbb{C}^{2}$ we have

$$
\begin{aligned}
\left\langle\binom{ z_{1}}{z_{2}},\binom{1}{-2}\right\rangle & =z_{1} \cdot \overline{1}+z_{2} \cdot(\overline{-2}) \\
& =z_{1}-2 z_{2} \\
& =g\binom{z_{1}}{z_{2}}
\end{aligned}
$$

$\S 6.3 \# 3$ For each of the following inner product space $V$ and linear operators $T$ on $V$, evaluate $T^{*}$ at the given vector in $V$.
(b) $V=\mathbb{C}^{2}, T\binom{z_{1}}{z_{2}}=\binom{2 z_{1}+i z_{2}}{(1-i) z_{1}}$ and $x=\binom{3-i}{1+2 i}$.

First note that $T\binom{z_{1}}{z_{2}}=\left(\begin{array}{cc}2 & i \\ 1-i & 0\end{array}\right)\binom{z_{1}}{z_{2}}$ for all vectors $\binom{z_{1}}{z_{2}} \in \mathbb{C}^{2}$. Let $\beta=\left\{\binom{1}{0},\binom{0}{1}\right\}$, i.e. the standard basis of $\mathbb{C}^{2}$, then $[T]_{\beta}=\left(\begin{array}{cc}2 & i \\ 1-i & 0\end{array}\right)$. Since $\left[T^{*}\right]_{\beta}=[T]_{\beta}^{*}$ we have that

$$
\left[T^{*}\right]_{\beta}=\left(\begin{array}{cc}
2 & i \\
1-i & 0
\end{array}\right)^{*}=\left(\begin{array}{cc}
2 & 1+i \\
-i & 0
\end{array}\right) .
$$

Now we remark that for any $v \in \mathbb{C}$ we have $v=[v]_{\beta}$, so

$$
\begin{aligned}
T^{*}\binom{z_{1}}{z_{2}} & =\left[T^{*}\binom{z_{1}}{z_{2}}\right]_{\beta}, \\
& =\left[T^{*}\right]_{\beta}\left[\binom{z_{1}}{z_{2}}\right]_{\beta} \\
& =\left(\begin{array}{cc}
2 & 1+i \\
-i & 0
\end{array}\right)\binom{z_{1}}{z_{2}} .
\end{aligned}
$$

So we can compute $T^{*}$ on all vectors of $\mathbb{C}^{2}$ by the above matrix formula, therefore

$$
\begin{aligned}
T\binom{3-i}{1+2 i} & =\left(\begin{array}{cc}
2 & 1+i \\
-i & 0
\end{array}\right)\binom{3-i}{1+2 i} \\
& =\binom{2 \cdot(3-i)+(1+i) \cdot(1+2 i)}{-i \cdot(3-i)+0 \cdot(1+2 i)} \\
& =\binom{6-2 i+1+2 i+i+2 i^{2}}{-3 i+i^{2}}, \\
& =\binom{5+i}{-1-3 i}
\end{aligned}
$$

$\S 6.3 \# 12 \mathrm{a}^{*}$ Theorem. Let $V$ be an inner product space and let $T$ be a linear operator on $V$. Then $R\left(T^{*}\right)^{\perp}=N(T)$.

Proof. We will show that following list of statements are all equivalent,
(i) $x \in N(T)$,
(ii) $T(x)=0$,
(iii) $\langle T(x), y\rangle=0$ for all $y \in V$,
(iv) $\left\langle x, T^{*}(y)\right\rangle=0$ for all $y \in V$,
(v) $\langle x, w\rangle=0$ for all $w \in R\left(T^{*}\right)$,
(vi) $x \in R\left(T^{*}\right)^{\perp}$,
so in particular once we've done this we have that $N(T)=R\left(T^{*}\right)^{\perp}$ by the equivalence of (i) and (vi).

That (i) and (ii) are equivalent is just the definition of $N(T)$. That (ii) and (iii) are equivalent is just the observation that the only vector $u \in V$ with $\langle u, v\rangle=0$ for all $v \in V$ is $u=0$.

That (iii) and (iv) are equivalent is just the fact that for any vectors $u, v \in V$ we have $\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle$ since $T^{*}$ is the adjoint of $T$ and this property is the defining property of the adjoint.

The equivalence of (iv) and (v) follows form the fact that $w \in R\left(T^{*}\right)$ if and only if $w=T(y)$ for some $y \in V$.

Finally the equivalence of (v) and (vi) is just the definition of $R\left(T^{*}\right)^{\perp}$. So (i) and (vi) are equivalent, which means exactly that $R\left(T^{*}\right)^{\perp}=N(T)$.

