Homework Notes - Week 6

$$
\text { Math } 24 \text { - Spring } 2014
$$

$\S 3.4 \# 4 \mathrm{~b}$ The system

$$
\begin{array}{ll}
x_{1}+x_{2}-3 x_{3}+x_{4} & =-2, \\
x_{1}+x_{2}+x_{3}-x_{4} & =2, \\
x_{1}+x_{2}-x_{3} & =0,
\end{array}
$$

is consistent. To see this we put the matrix

$$
(A \mid b)=\left(\begin{array}{rrrrr}
1 & 1 & -3 & 1 & -2 \\
1 & 1 & 1 & -1 & 2 \\
1 & 1 & -1 & 0 & 0
\end{array}\right),
$$

into reduced row echelon form.
Adding -1 times the first row to the second and third rows we obtain the matrix

$$
\left(\begin{array}{rrrrr}
1 & 1 & -3 & 1 & -2 \\
0 & 0 & 4 & -2 & 4 \\
0 & 0 & 2 & -1 & 2
\end{array}\right)
$$

Now we note that the second row is twice the third, so we can eliminate the third row and then multiply the second row by $1 / 4$ to obtain the matrix

$$
\left(\begin{array}{rrrrr}
1 & 1 & -3 & 1 & -2 \\
0 & 0 & 1 & -1 / 2 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Now adding three times the second row to the first we obtain the matrix

$$
\left(\begin{array}{rrrrr}
1 & 1 & 0 & -1 / 2 & 1 \\
0 & 0 & 1 & -1 / 2 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Now since this is in reduced row echelon form exercise 3 says that the system is consistent, i.e. that it has a solution. To see what's it's solution set is, we just read
off what an arbitrary solution must be from the above matrix, namely that in order for $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ to be a solution we must have

$$
\begin{aligned}
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) & =\left(\begin{array}{c}
-x_{2}+\frac{1}{2} x_{4}+1 \\
x_{2} \\
\frac{1}{2} x_{4}+1 \\
x_{4}
\end{array}\right), \\
& =x_{2}\left(\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
1 / 2 \\
0 \\
1 / 2 \\
1
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right) .
\end{aligned}
$$

Now finally by Theorem 3.15(b) the set

$$
\left\{\left(\begin{array}{r}
-1 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
1 / 2 \\
0 \\
1 / 2 \\
1
\end{array}\right)\right\}
$$

is a basis for the corresponding homogeneous system.
§3.4\#15* Theorem. A matrix has only one reduced row echelon form.
Proof. We will prove this by induction on n, the number of columns of a matrix. For this, let A be an $m \times n$ matrix and suppose that B, C are $m \times n$ matrices which are both reduced row echelon forms of A.

If $n=1$ then A, B, C are all just column vectors and we really only have two options, $\operatorname{rank} A=0$ or 1 . If rank $A=0$ then $A=B=C=0$ so in particular $B=C$. If $\operatorname{rank} A=1$ then by Theorem 3.16 we know that there is a column of B that is the column vector e_{1}, i.e. that $B=e_{1}$. But similar $C=e_{1}$, hence $B=C$.

Now suppose that $n>1$ and that all matrices with $n-1$ columns have a unique reduced row echelon form. Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the matrices obtained by deleting the nth column of A, B, C respectively. Since deleting a column has no effect on the row operations in the remaining columns, B^{\prime}, C^{\prime} are reduced row echelon forms of A^{\prime} and so by the induction hypothesis we have that $B^{\prime}=C^{\prime}$.

So at the very least the first $n-1$ columns of B and C are the same, so the only way they could disagree is in column n. Note that adding a column to a matrix either leaves the rank the same or increases it by one we have that $\operatorname{rank} A=\operatorname{rank} A^{\prime}$ or $\operatorname{rank} A=\operatorname{rank} A^{\prime}+1$. Throughout the rest let $r=\operatorname{rank} A$.

If $r=\operatorname{rank} A^{\prime}$ then by Theorem 3.16 part (b) there are columns $b_{j_{i}}=e_{i}$ of B for each $i=1,2, \ldots, r$. Now since $B^{\prime}=C^{\prime}$ we know that the columns $c_{j_{i}}=e_{i}$ as well. Since column n of B is of the form $d_{1} e_{1}+\cdots d_{r} e_{r}$ for some scalars $d_{1}, \ldots d_{r}$ we know that column n of A is $d_{1} a_{j_{1}}+\cdots d_{r} a_{j_{r}}$, this is from Theorem 3.16 part (d). But similarly column n of C is of the form $d_{1}^{\prime} e_{1}+\cdots d_{r}^{\prime} e_{r}$ for some scalars $d_{1}^{\prime}, \ldots, d_{r}^{\prime}$ and again column n of A is $d_{1}^{\prime} a_{j_{1}}+\cdots d_{r}^{\prime} a_{j_{r}}$.

But Theorem 3.16 part (c) says that $\left\{a_{j_{1}}, \ldots, a_{j_{r}}\right\}$ is linearly independent, and we have just shown that

$$
d_{1} a_{j_{1}}+\cdots d_{r} a_{j_{r}}=d_{1}^{\prime} e_{1}+\cdots d_{r}^{\prime} e_{r}
$$

so by linear independence of these vectors we have $d_{1}=d_{1}^{\prime}, d_{2}=d_{2}^{\prime}, \ldots, d_{r}=d_{r}^{\prime}$. But this means exactly that the nth column of B and C are the same, so finally $B=C$

If $r=\operatorname{rank} A^{\prime}+1$ then we will see that the column n of B and C is precisely e_{r}. Since B^{\prime}, C^{\prime} are in reduced row echelon form and have rank $r-1$ they must have all zeros in row r. But since B, C have rank r there must be a nonzero entry in row r of these matrices, in particular the entry of column n and row r of B and C must be nonzero. Since this is the first nonzero entry in row r it must be 1 and this must be the only nonzero entry in column n as B and C are reduced row echelon forms. But this means precisely that the nth columns of B and C are e_{r}, hence that $B=C$.
$\S 4.1 \# 9$ For any $A, B \in M_{2 \times 2}(F)$ we have $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. We know that we can write

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), B=\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)
$$

for some scalars a, b, \ldots, h. By definition

$$
\operatorname{det}(A) \operatorname{det}(B)=(a d-b c)(e h-f g)
$$

and we can compute $\operatorname{det}(A B)$ directly,

$$
\begin{aligned}
\operatorname{det}(A B) & =\operatorname{det}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\right), \\
& =\operatorname{det}\left(\begin{array}{cc}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right) \\
& =(a e+b g)(c f+d h)-(a f+b h)(c e+d g), \\
& =a e c f+a e d h+b g c f+b g d h-a f c e-a f d g-b h c e-b h d g, \\
& =a c e f-a c e f+a d e h-a f d g+b c g f-b c h e+b d g h-b d g h, \\
& =a d e h-a f d g+b c g f-b c h e, \\
& =a d(e h-f g)-b c(e h-f g), \\
& =(a d-b c)(e h-f g) .
\end{aligned}
$$

$\S 4.1 \# 10$ Let $A \in M_{2 \times 2}(F)$ and C the classical adjoint of A, i.e.

$$
C=\left(\begin{array}{rr}
A_{2,2} & -A_{1,2} \\
-A_{2,1} & A_{1,1}
\end{array}\right)
$$

For part (a) we compute directly $A C$ and $C A$,

$$
\begin{aligned}
A C & =\left(\begin{array}{cc}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right)\left(\begin{array}{rr}
A_{2,2} & -A_{1,2} \\
-A_{2,1} & A_{1,1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
A_{1,1} A_{2,2}-A_{1,2} A_{2,1} & -A_{1,1} A_{1,2}+A_{1,2} A_{1,1} \\
A_{2,1} A_{2,2}-A_{2,2} A_{2,1} & -A_{2,1} A_{1,2}+A_{2,2} A_{1,1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\operatorname{det}(A) & 0 \\
0 & \operatorname{det}(A)
\end{array}\right) \\
& =\operatorname{det}(A)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

The computation for $C A$ is essentially identical.
For part (b) we just compute $\operatorname{det}(C)$,

$$
\begin{aligned}
\operatorname{det}(C) & =\operatorname{det}\left(\begin{array}{rr}
A_{2,2} & -A_{1,2} \\
-A_{2,1} & A_{1,1}
\end{array}\right), \\
& =A_{2,2} A_{1,1}-A_{1,2} A_{2,1} \\
& =A_{1,1} A_{2,2}-A_{1,2} A_{2,1} \\
& =\operatorname{det}(A)
\end{aligned}
$$

Finally for part (c) we know that if $\operatorname{det}(A) \neq 0$ if and only if A is invertible, so if A is invertible then $A\left(\frac{1}{\operatorname{det}(A)} C\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$, and by uniqueness of inverses we have $A^{-1}=[\operatorname{det}(A)]^{-1} C$.
§4.1\#11* Theorem. Suppose $\delta: \mathrm{M}_{2 \times 2}(F) \rightarrow F$ is a function with the following three properties.
(i) δ is a linear function of each row of the matrix when the other row is held fixed.
(ii) If the two rows of $A \in \mathrm{M}_{2 \times 2}(F)$ are identical, then $\delta(A)=0$.
(iii) If I is the 2×2 identity matrix, then $\delta(I)=1$.

Then $\delta(A)=\operatorname{det}(A)$ for every $A \in \mathrm{M}_{2 \times 2}(F)$.
Suppose δ satisfies properties (i), (ii) and (iii). For the current proof, given vectors $x, y \in F^{2}$, let's write $\binom{x}{y}$ for the 2×2 matrix whose rows are x and y as there will never be any danger to confuse this notation with that of a column vector. We will break down the argument in three lemmas.

Lemma 1. $\quad \delta\binom{x}{y}=-\delta\binom{y}{x}$.
Proof. Because of property (i), we have

$$
\delta\binom{x+y}{x+y}=\delta\binom{x}{x+y}+\delta\binom{y}{x+y}=\delta\binom{x}{x}+\delta\binom{x}{y}+\delta\binom{y}{x}+\delta\binom{y}{y} .
$$

Because of property (ii), we have

$$
\delta\binom{x}{x}=0, \quad \delta\binom{y}{y}=0, \quad \text { and } \quad \delta\binom{x+y}{x+y}=0
$$

Therefore, $\delta\binom{x}{y}+\delta\binom{y}{x}=0$ or, equivalently, $\delta\binom{x}{y}=-\delta\binom{y}{x}$.

Lemma 2. We have $\delta\binom{e_{1}}{e_{1}}=0$ and $\delta\binom{e_{1}}{e_{2}}=1$ and therefore $\delta\binom{e_{1}}{y}=y_{2}$ for every $y=\left(y_{1}, y_{2}\right) \in F^{2}$.

Proof. The first two facts are immediate consequences of properties (ii) and (iii), respectively. By property (i), we then also have

$$
\delta\binom{e_{1}}{y}=\delta\binom{e_{1}}{y_{1} e_{1}+y_{2} e_{2}}=y_{1} \delta\binom{e_{1}}{e_{1}}+y_{2} \delta\binom{e_{1}}{e_{2}}=y_{1}(0)+y_{2}(1)=y_{2}
$$

for every vector $y=\left(y_{1}, y_{2}\right) \in F^{2}$.
Lemma 3. We have $\delta\binom{e_{2}}{e_{1}}=-1$ and $\delta\binom{e_{2}}{e_{2}}=0$ and therefore $\delta\binom{e_{2}}{y}=-y_{1}$ for every $y=\left(y_{1}, y_{2}\right) \in F^{2}$.

Proof. The first fact follows from property (iii) and Lemma 1 and the second fact follows from property (ii). By property (i), we then also have

$$
\delta\binom{e_{2}}{y}=\delta\binom{e_{2}}{y_{1} e_{1}+y_{2} e_{2}}=y_{1} \delta\binom{e_{2}}{e_{1}}+y_{2} \delta\binom{e_{1}}{e_{2}}=y_{1}(-1)+y_{2}(0)=-y_{1}
$$

for every vector $y=\left(y_{1}, y_{2}\right) \in F^{2}$.
Now, by property (i), we have for any two vectors $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in F^{2}$ that

$$
\begin{aligned}
\delta\binom{x}{y} & =\delta\binom{x_{1} e_{1}+x_{2} e_{2}}{y} \\
& =x_{1} \delta\binom{e_{1}}{y}+x_{2} \delta\binom{e_{2}}{y} \\
& =x_{1} y_{2}-x_{2} y_{1} .
\end{aligned}
$$

It then follows immediately from the definition of 2×2 determinants that $\delta(A)=$ $\operatorname{det}(A)$ for every 2×2 matrix A over F.
§4.2\#23* Theorem. The determinant of an upper triangular matrix is the product of its diagonal entries.

Proof. This is easy to see from the alternate definition of determinants from the April 24 slides. The idea is that if A is an $n \times n$ matrix and σ is an n-permutation then

$$
\operatorname{sign}(\sigma) A_{1 \sigma_{1}} \cdots A_{n \sigma_{n}}=0
$$

unless σ is the permutation $(1,2, \ldots, n)$, where every number is in order.
Indeed, given any other permutation σ, let i be the first number such that $\sigma_{i} \neq i$. We must then have $\sigma_{j}=i$ for some $j>i$. But then $A_{j \sigma_{j}}=A_{j i}=0$ since A is upper triangular.

Proof. Suppose that $A=\left(A_{i, j}\right)_{1 \leq i, j \leq n}$ is an $n \times n$ upper triangular matrix, meaning that $A_{i, j}=0$ for all $i>j$.

We prove this by induction on n, the number of columns (and rows) in an upper triangular matrix. If $n=1$ then $A=(a)$ and $\operatorname{det}(A)=a$ by definition of det for 1×1 matrices. Now suppose that $n>1$ and that the result holds for all $(n-1) \times(n-1)$ upper triangular matrices. Then we compute $\operatorname{det}(A)$ by cofactor expansion along row n. Theorem 4.4 then shows that

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{n+j} A_{n, j} \cdot \operatorname{det}\left(\widetilde{A}_{n, n}\right)=(-1)^{n+n} A_{n, n} \operatorname{det}\left(\widetilde{A}_{n, n}\right)=A_{n, n} \operatorname{det}\left(\widetilde{A}_{n, n}\right)
$$

since $A_{n, 1}=A_{n, 2}=\cdots=A_{n, n-1}=0$. Now if $\widetilde{A}_{n, n}$ is an $(n-1) \times(n-1)$ matrix and is upper triangular with diagonal entries $A_{1,1}, A_{2,2}, \ldots, A_{n-1, n-1}$ so by the induction hypothesis

$$
\operatorname{det}(A)=A_{n, n} \operatorname{det}\left(\widetilde{A}_{n, n}\right)=A_{n, n} A_{1,1} \cdots A_{n-1, n-1}=A_{1,1} \cdots A_{n, n}
$$

which is precisely the product of the diagonal entries of A.
$\S 4.2 \# 24$ If an $n \times n$ matrix A has a row consisting entirely of zeros then $\operatorname{det}(A)=0$. First write $A=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)$ for some row vectors $a_{1}, \ldots a_{n}$. Then suppose that $a_{i}=0$ for some $1 \leq i \leq n$, then Theorem 4.3

$$
\begin{aligned}
& \operatorname{det}(A)=\operatorname{det}\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{i-1} \\
0 \\
a_{i+1} \\
\vdots \\
a_{n}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{i-1} \\
0+0 \\
a_{i+1} \\
\vdots \\
a_{n}
\end{array}\right) \text {, } \\
& =\operatorname{det}\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{i-1} \\
0 \\
a_{i+1} \\
\vdots \\
a_{n}
\end{array}\right)+\operatorname{det}\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{i-1} \\
0 \\
a_{i+1} \\
\vdots \\
a_{n}
\end{array}\right), \\
& =\operatorname{det}(A)+\operatorname{det}(A) \text {, } \\
& =2 \operatorname{det}(A) \text {. }
\end{aligned}
$$

So subtracting $\operatorname{det}(A)$ from both sides we get $\operatorname{det}(A)=0$.
$\S 4.3 \# 11$ If M is skew-symmetric, then $\operatorname{det}(-M)=\operatorname{det}\left(M^{t}\right)=\operatorname{det}(M)$ by Theorem 4.8. Since $-M=(-I) M$, we also have $\operatorname{det}(-M)=\operatorname{det}(-I) \operatorname{det}(M)=$ $(-1)^{n} \operatorname{det}(M)$ by Theorem 4.7 and Exercise 23 from Section 4.2. If n is odd, then it follows from $\operatorname{det}(M)=-\operatorname{det}(M)$ that $\operatorname{det}(M)=0$. (Since we are working over the complex numbers, $1+1 \neq 0$.)

If n is even, then the above says nothing much. A $(2 k) \times(2 k)$ a skew-symmetric matrix may or may not be invertible. The zero matrix is an example of a $(2 k) \times(2 k)$
skew-symmetric matrix that is not invertible. The matrix B given by

$$
B=\left(\begin{array}{cc}
0_{k} & I_{k} \\
-I_{k} & 0_{k}
\end{array}\right)
$$

where I_{k} is the $k \times k$ identity matrix and 0_{k} is the $k \times k$ zero matrix, then B is invertible since $\operatorname{rank}(B)=2 k$ and B is clearly skew-symmetric.

Indeed, $M=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ is a skew-symmetric matrix with determinant 1.
$\S 4.3 \# 12$ If $Q \in M_{n \times n}(\mathbb{R})$ is orthogonal then $\operatorname{det}(Q)= \pm 1$.
Recall a few facts about determinant, first we know that $\operatorname{det}(I)=1$ (where I is the identity matrix), second $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ for all $A, B \in M_{n \times n}(\mathbb{R})$ and third that $\operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$.

Using these facts we have

$$
1=\operatorname{det}(I)=\operatorname{det}\left(Q Q^{t}\right)=\operatorname{det}(Q) \operatorname{det}\left(Q^{t}\right)=\operatorname{det}(Q) \operatorname{det}(Q)=\operatorname{det}(Q)^{2},
$$

but the only numbers in \mathbb{R} whose squares are one are 1 and -1 . Therefore $\operatorname{det}(Q)=$ ± 1.

