
Homework Notes — Week 6

Math 24 — Spring 2014

§3.4#4b The system

x1 + x2 − 3x3 + x4 = −2,
x1 + x2 + x3 − x4 = 2,
x1 + x2 − x3 = 0,

is consistent. To see this we put the matrix

(A|b) =

 1 1 −3 1 −2
1 1 1 −1 2
1 1 −1 0 0

 ,

into reduced row echelon form.
Adding −1 times the first row to the second and third rows we obtain the matrix 1 1 −3 1 −2

0 0 4 −2 4
0 0 2 −1 2

 .

Now we note that the second row is twice the third, so we can eliminate the third
row and then multiply the second row by 1/4 to obtain the matrix 1 1 −3 1 −2

0 0 1 −1/2 1
0 0 0 0 0

 .

Now adding three times the second row to the first we obtain the matrix 1 1 0 −1/2 1
0 0 1 −1/2 1
0 0 0 0 0

 .

Now since this is in reduced row echelon form exercise 3 says that the system is
consistent, i.e. that it has a solution. To see what’s it’s solution set is, we just read
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off what an arbitrary solution must be from the above matrix, namely that in order
for (x1, x2, x3, x4) to be a solution we must have

x1
x2
x3
x4

 =


−x2 + 1

2
x4 + 1

x2
1
2
x4 + 1
x4

 ,

= x2


−1

1
0
0

+ x4


1/2
0

1/2
1

+


1
0
1
0

 .

Now finally by Theorem 3.15(b) the set

−1

1
0
0

 ,


1/2
0

1/2
1




is a basis for the corresponding homogeneous system.

§3.4#15* Theorem. A matrix has only one reduced row echelon form.

Proof. We will prove this by induction on n, the number of columns of a matrix. For
this, let A be an m× n matrix and suppose that B,C are m× n matrices which are
both reduced row echelon forms of A.

If n = 1 then A,B,C are all just column vectors and we really only have two
options, rankA = 0 or 1. If rankA = 0 then A = B = C = 0 so in particular B = C.
If rankA = 1 then by Theorem 3.16 we know that there is a column of B that is the
column vector e1, i.e. that B = e1. But similar C = e1, hence B = C.

Now suppose that n > 1 and that all matrices with n− 1 columns have a unique
reduced row echelon form. Let A′, B′, C ′ be the matrices obtained by deleting the
nth column of A,B,C respectively. Since deleting a column has no effect on the row
operations in the remaining columns, B′, C ′ are reduced row echelon forms of A′ and
so by the induction hypothesis we have that B′ = C ′.

So at the very least the first n − 1 columns of B and C are the same, so the
only way they could disagree is in column n. Note that adding a column to a matrix
either leaves the rank the same or increases it by one we have that rankA = rankA′

or rankA = rankA′ + 1. Throughout the rest let r = rankA.

2



If r = rankA′ then by Theorem 3.16 part (b) there are columns bji = ei of B
for each i = 1, 2, . . . , r. Now since B′ = C ′ we know that the columns cji = ei as
well. Since column n of B is of the form d1e1 + · · · drer for some scalars d1, . . . dr we
know that column n of A is d1aj1 + · · · drajr , this is from Theorem 3.16 part (d). But
similarly column n of C is of the form d′1e1 + · · · d′rer for some scalars d′1, . . . , d

′
r and

again column n of A is d′1aj1 + · · · d′rajr .
But Theorem 3.16 part (c) says that {aj1 , . . . , ajr} is linearly independent, and

we have just shown that

d1aj1 + · · · drajr = d′1e1 + · · · d′rer,

so by linear independence of these vectors we have d1 = d′1, d2 = d′2, . . . , dr = d′r. But
this means exactly that the nth column of B and C are the same, so finally B = C

If r = rankA′ + 1 then we will see that the column n of B and C is precisely er.
Since B′, C ′ are in reduced row echelon form and have rank r− 1 they must have all
zeros in row r. But since B,C have rank r there must be a nonzero entry in row r
of these matrices, in particular the entry of column n and row r of B and C must be
nonzero. Since this is the first nonzero entry in row r it must be 1 and this must be
the only nonzero entry in column n as B and C are reduced row echelon forms. But
this means precisely that the nth columns of B and C are er, hence that B = C.

§4.1#9 For any A,B ∈ M2×2(F ) we have det(AB) = det(A) det(B). We know
that we can write

A =

(
a b
c d

)
, B =

(
e f
g h

)
,

for some scalars a, b, . . . , h. By definition

det(A) det(B) = (ad− bc)(eh− fg),
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and we can compute det(AB) directly,

det(AB) = det

((
a b
c d

)(
e f
g h

))
,

= det

(
ae+ bg af + bh
ce+ dg cf + dh

)
= (ae+ bg)(cf + dh)− (af + bh)(ce+ dg),

= aecf + aedh+ bgcf + bgdh− afce− afdg − bhce− bhdg,
= acef − acef + adeh− afdg + bcgf − bche+ bdgh− bdgh,
= adeh− afdg + bcgf − bche,
= ad(eh− fg)− bc(eh− fg),

= (ad− bc)(eh− fg).

§4.1#10 Let A ∈M2×2(F ) and C the classical adjoint of A, i.e.

C =

(
A2,2 −A1,2

−A2,1 A1,1

)
.

For part (a) we compute directly AC and CA,

AC =

(
A1,1 A1,2

A2,1 A2,2

)(
A2,2 −A1,2

−A2,1 A1,1

)
,

=

(
A1,1A2,2 − A1,2A2,1 −A1,1A1,2 + A1,2A1,1

A2,1A2,2 − A2,2A2,1 −A2,1A1,2 + A2,2A1,1

)
,

=

(
det(A) 0

0 det(A)

)
,

= det(A)

(
1 0
0 1

)
.

The computation for CA is essentially identical.
For part (b) we just compute det(C),

det(C) = det

(
A2,2 −A1,2

−A2,1 A1,1

)
,

= A2,2A1,1 − A1,2A2,1,

= A1,1A2,2 − A1,2A2,1,

= det(A).
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Finally for part (c) we know that if det(A) 6= 0 if and only if A is invertible, so if A

is invertible then A
(

1
det(A)

C
)

=

(
1 0
0 1

)
, and by uniqueness of inverses we have

A−1 = [det(A)]−1C.

§4.1#11* Theorem. Suppose δ : M2×2(F ) → F is a function with the following
three properties.

(i) δ is a linear function of each row of the matrix when the other row is held fixed.

(ii) If the two rows of A ∈ M2×2(F ) are identical, then δ(A) = 0.

(iii) If I is the 2× 2 identity matrix, then δ(I) = 1.

Then δ(A) = det(A) for every A ∈ M2×2(F ).
Suppose δ satisfies properties (i), (ii) and (iii). For the current proof, given vectors

x, y ∈ F 2, let’s write

(
x
y

)
for the 2× 2 matrix whose rows are x and y as there will

never be any danger to confuse this notation with that of a column vector. We will
break down the argument in three lemmas.

Lemma 1. δ

(
x
y

)
= −δ

(
y
x

)
.

Proof. Because of property (i), we have

δ

(
x+ y
x+ y

)
= δ

(
x

x+ y

)
+ δ

(
y

x+ y

)
= δ

(
x
x

)
+ δ

(
x
y

)
+ δ

(
y
x

)
+ δ

(
y
y

)
.

Because of property (ii), we have

δ

(
x
x

)
= 0, δ

(
y
y

)
= 0, and δ

(
x+ y
x+ y

)
= 0.

Therefore, δ

(
x
y

)
+ δ

(
y
x

)
= 0 or, equivalently, δ

(
x
y

)
= −δ

(
y
x

)
.
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Lemma 2. We have δ

(
e1
e1

)
= 0 and δ

(
e1
e2

)
= 1 and therefore δ

(
e1
y

)
= y2 for

every y = (y1, y2) ∈ F 2.

Proof. The first two facts are immediate consequences of properties (ii) and (iii),
respectively. By property (i), we then also have

δ

(
e1
y

)
= δ

(
e1

y1e1 + y2e2

)
= y1δ

(
e1
e1

)
+ y2δ

(
e1
e2

)
= y1(0) + y2(1) = y2

for every vector y = (y1, y2) ∈ F 2.

Lemma 3. We have δ

(
e2
e1

)
= −1 and δ

(
e2
e2

)
= 0 and therefore δ

(
e2
y

)
= −y1 for

every y = (y1, y2) ∈ F 2.

Proof. The first fact follows from property (iii) and Lemma 1 and the second fact
follows from property (ii). By property (i), we then also have

δ

(
e2
y

)
= δ

(
e2

y1e1 + y2e2

)
= y1δ

(
e2
e1

)
+ y2δ

(
e1
e2

)
= y1(−1) + y2(0) = −y1

for every vector y = (y1, y2) ∈ F 2.

Now, by property (i), we have for any two vectors x = (x1, x2), y = (y1, y2) ∈ F 2

that

δ

(
x
y

)
= δ

(
x1e1 + x2e2

y

)
= x1δ

(
e1
y

)
+ x2δ

(
e2
y

)
= x1y2 − x2y1.

It then follows immediately from the definition of 2 × 2 determinants that δ(A) =
det(A) for every 2× 2 matrix A over F.

§4.2#23* Theorem. The determinant of an upper triangular matrix is the prod-
uct of its diagonal entries.
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Proof. This is easy to see from the alternate definition of determinants from the
April 24 slides. The idea is that if A is an n× n matrix and σ is an n-permutation
then

sign(σ)A1σ1 · · ·Anσn = 0

unless σ is the permutation (1, 2, . . . , n), where every number is in order.
Indeed, given any other permutation σ, let i be the first number such that σi 6= i.

We must then have σj = i for some j > i. But then Ajσj = Aji = 0 since A is upper
triangular.

Proof. Suppose that A = (Ai,j)1≤i,j≤n is an n× n upper triangular matrix, meaning
that Ai,j = 0 for all i > j.

We prove this by induction on n, the number of columns (and rows) in an upper
triangular matrix. If n = 1 then A = (a) and det(A) = a by definition of det for 1×1
matrices. Now suppose that n > 1 and that the result holds for all (n− 1)× (n− 1)
upper triangular matrices. Then we compute det(A) by cofactor expansion along
row n. Theorem 4.4 then shows that

det(A) =
n∑
j=1

(−1)n+jAn,j · det(Ãn,n) = (−1)n+nAn,n det(Ãn,n) = An,n det(Ãn,n),

since An,1 = An,2 = · · · = An,n−1 = 0. Now if Ãn,n is an (n− 1)× (n− 1) matrix and
is upper triangular with diagonal entries A1,1, A2,2, . . . , An−1,n−1 so by the induction
hypothesis

det(A) = An,n det(Ãn,n) = An,nA1,1 · · ·An−1,n−1 = A1,1 · · ·An,n,

which is precisely the product of the diagonal entries of A.

§4.2#24 If an n×nmatrix A has a row consisting entirely of zeros then det(A) = 0.

First write A =

 a1
...
an

 for some row vectors a1, . . . an. Then suppose that

ai = 0 for some 1 ≤ i ≤ n, then Theorem 4.3
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det(A) = det



a1
...

ai−1
0
ai+1

...
an



= det



a1
...

ai−1
0 + 0
ai+1

...
an


,

= det



a1
...

ai−1
0
ai+1

...
an


+ det



a1
...

ai−1
0
ai+1

...
an


,

= det(A) + det(A),

= 2 det(A).

So subtracting det(A) from both sides we get det(A) = 0.

§4.3#11 If M is skew-symmetric, then det(−M) = det(M t) = det(M) by The-
orem 4.8. Since −M = (−I)M, we also have det(−M) = det(−I) det(M) =
(−1)n det(M) by Theorem 4.7 and Exercise 23 from Section 4.2. If n is odd, then it
follows from det(M) = − det(M) that det(M) = 0. (Since we are working over the
complex numbers, 1 + 1 6= 0.)

If n is even, then the above says nothing much. A (2k)× (2k) a skew-symmetric
matrix may or may not be invertible. The zero matrix is an example of a (2k)× (2k)
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skew-symmetric matrix that is not invertible. The matrix B given by

B =

(
0k Ik
−Ik 0k

)
where Ik is the k × k identity matrix and 0k is the k × k zero matrix, then B is
invertible since rank(B) = 2k and B is clearly skew-symmetric.

Indeed, M =

(
0 −1
1 0

)
is a skew-symmetric matrix with determinant 1.

§4.3#12 If Q ∈Mn×n(R) is orthogonal then det(Q) = ±1.
Recall a few facts about determinant, first we know that det(I) = 1 (where I is

the identity matrix), second det(AB) = det(A) det(B) for all A,B ∈ Mn×n(R) and
third that det(At) = det(A).

Using these facts we have

1 = det(I) = det(QQt) = det(Q) det(Qt) = det(Q) det(Q) = det(Q)2,

but the only numbers in R whose squares are one are 1 and −1. Therefore det(Q) =
±1.
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