Homework Notes — Week 6

Math 24 — Spring 2014

83.4#4b The system

$1+ZL’2—3$3+I4 :—2,
$1+$2+5E3—ZE4 :2,
T+ X9 — T3 :0,

is consistent. To see this we put the matrix

11 -3 1 -2
Ap =11 1 -1 2],
11 -1 0 0

into reduced row echelon form.
Adding —1 times the first row to the second and third rows we obtain the matrix

11 -3 1 =2
00 4 -2 4
00 2 -1 2

Now we note that the second row is twice the third, so we can eliminate the third
row and then multiply the second row by 1/4 to obtain the matrix

-3 1 =2

11
00 1 —-1/2 1
00 0 0 0

Now adding three times the second row to the first we obtain the matrix
110 —-1/2 1

001 —1/2 1
000 0 0

Now since this is in reduced row echelon form exercise 3 says that the system is
consistent, i.e. that it has a solution. To see what’s it’s solution set is, we just read

1



off what an arbitrary solution must be from the above matrix, namely that in order
for (z1, s, x3,4) to be a solution we must have

T —Z9 + %LL’4 +1
4 i 4
T3 o %I4 + 1 ’
L4 L4
~1 1/2 1
1 0 0
= X9 0 + x4 1/2 + 1
0 1 0

Now finally by Theorem 3.15(b) the set

~1
1
0] ] 1/2
0 1

is a basis for the corresponding homogeneous system.

83.4#15* Theorem. A matriz has only one reduced row echelon form.

Proof. We will prove this by induction on n, the number of columns of a matrix. For
this, let A be an m x n matrix and suppose that B, C' are m x n matrices which are
both reduced row echelon forms of A.

If n =1 then A, B,C are all just column vectors and we really only have two
options, rank A = 0 or 1. If rank A = 0 then A = B = C = 0 so in particular B = C.
If rank A = 1 then by Theorem 3.16 we know that there is a column of B that is the
column vector eq, i.e. that B = e;. But similar C' = e, hence B = C.

Now suppose that n > 1 and that all matrices with n — 1 columns have a unique
reduced row echelon form. Let A’, B’,C" be the matrices obtained by deleting the
nth column of A, B, C respectively. Since deleting a column has no effect on the row
operations in the remaining columns, B’, C' are reduced row echelon forms of A’ and
so by the induction hypothesis we have that B’ = C".

So at the very least the first n — 1 columns of B and C' are the same, so the
only way they could disagree is in column n. Note that adding a column to a matrix
either leaves the rank the same or increases it by one we have that rank A = rank A’
or rank A = rank A’ + 1. Throughout the rest let » = rank A.



If » = rank A’ then by Theorem 3.16 part (b) there are columns b;, = e; of B
for each i = 1,2,...,r. Now since B’ = (" we know that the columns ¢;, = e; as
well. Since column n of B is of the form dye; + - - - d,.e, for some scalars dy,...d, we
know that column n of A is dya;, +- - - d,a;,, this is from Theorem 3.16 part (d). But
similarly column n of C is of the form dje; + - - - d).e, for some scalars di, ..., d, and
again column n of A is dja;, +---d,a;, .

But Theorem 3.16 part (c) says that {aj,,...,a; } is linearly independent, and
we have just shown that

! !
dlajl —+ .- drajT = a;€61 —+ .. d,,er,

so by linear independence of these vectors we have dy = dy,dy = d5, ... ,d, = d.. But
this means exactly that the nth column of B and C are the same, so finally B = C

If = rank A’ + 1 then we will see that the column n of B and C' is precisely e,.
Since B’,C" are in reduced row echelon form and have rank r — 1 they must have all
zeros in row r. But since B, C' have rank r there must be a nonzero entry in row r
of these matrices, in particular the entry of column n and row r of B and C' must be
nonzero. Since this is the first nonzero entry in row r it must be 1 and this must be
the only nonzero entry in column n as B and C' are reduced row echelon forms. But
this means precisely that the nth columns of B and C' are e,., hence that B =C. [J

§4.1#9 For any A, B € My.o(F) we have det(AB) = det(A)det(B). We know

that we can write
[ a b (e f
a=(ea)e=(50)

for some scalars a, b, ..., h. By definition

det(A) det(B) = (ad — bc)(eh — fg),



and we can compute det(AB) directly,

det(AB):det((g Z) <Z {L))

~ det ae+bg af + bh
a ce+dg cf +dh

= (ae +bg)(cf + dh) — (af + bh)(ce + dg),

= aecf + aedh + bgcf + bgdh — afce — afdg — bhce — bhdyg,
= acef —acef + adeh — afdg + begf — bche 4+ bdgh — bdgh,
= adeh — afdg + bcgf — bche,

— ad(eh — fg) — be(eh — fg),

= (ad — be)(eh — fg).

§4.1#10 Let A € Myyo(F) and C the classical adjoint of A, i.e.

Ass —Aig
C= ’ ' )
< —As Aiq )

For part (a) we compute directly AC and C'A,

A1 1 A1 2 A2 2 _Al 2
AC = Wt , ,
( A2,1 A2,2 ) < _A2,1 Al,l ) ,
_ A1,1A2,2 - A1,2A2,1 _A1,1A1,2 + A1,2A1,1 )
A2,1A2,2 - A2,2A271 _A2,1A1,2 + A2,2A1,1 ’

- ( deto(A) detO(A) ) ’
:det(A)((l) ‘1))

The computation for C'A is essentially identical.
For part (b) we just compute det(C),

Agn —Aip
det(C) = det ( Aoy Aiy ) ,
= AgoA11 — A12A21,
= A11A22 — A12 A2,
= det(A).



Finally for part (¢) we know that if det(A) # 0 if and only if A is invertible, so if A
is invertible then A <m0> = ( (1) (1) ) , and by uniqueness of inverses we have
A~ = [det(A)]71C.

§4.1#11*% Theorem. Suppose ¢ : Mayo(F) — F is a function with the following
three properties.
(1) 9 is a linear function of each row of the matriz when the other row is held fized.
(ii) If the two rows of A € Mayo(F) are identical, then §(A) = 0.
(iii) If I is the 2 x 2 identity matriz, then 6(1) = 1.

Then §(A) = det(A) for every A € Mayo(F).
Suppose ¢ satisfies properties (i), (ii) and (iii). For the current proof, given vectors

x,y € F?, let’s write ) for the 2 x 2 matrix whose rows are  and y as there will

never be any danger to confuse this notation with that of a column vector. We will
break down the argument in three lemmas.

Lemma 1. ¢ (m) =) (y) )
Yy T

Proof. Because of property (i), we have

()=o) ol B) = Q) () o) ()

Because of property (ii), we have

5(95) =0, 5(9) =0, and 5<Hy> —0.

x y T+y

Therefore, ¢§ <x) +6 <y> = 0 or, equivalently, § (m) =9 (y) ) O]
Yy x Y x

e



Lemma 2. We have 6 () =0 and 6 (") = 1 and therefore 0 ) = yo for
€1 €2 Y
every y = (y1,v2) € F2.

Proof. The first two facts are immediate consequences of properties (ii) and (iii),
respectively. By property (i), we then also have

€1\ €1 - el er) B
’ (y) =9 (y161 + y2€2) =0 (el> o (62> = 41(0) +32(1) = v2

for every vector y = (y1,92) € F*. ]

€1 €2

Lemma 3. We have o (62) =—1landé (62) = 0 and therefore ¢ ((Z) = —y; for
every y = (y1,v2) € F2.

Proof. The first fact follows from property (iii) and Lemma 1 and the second fact
follows from property (ii). By property (i), we then also have

’ (6;) =9 (ylel if ygeg) = Y10 (Z) + 920 (2) =y1(=1) +12(00) = —n

for every vector y = (y1,ys) € F2. O

Now, by property (i), we have for any two vectors z = (x1,3),y = (y1,y2) € F>

that
5 (l’) -5 (Z'1€1 + CCQ@Q)
Y )
ea(3) (3
) Y

= T1Y2 — T2Y1-

It then follows immediately from the definition of 2 x 2 determinants that §(A) =
det(A) for every 2 x 2 matrix A over F.

84.24#23* Theorem. The determinant of an upper triangular matriz is the prod-
uct of its diagonal entries.



Proof. This is easy to see from the alternate definition of determinants from the
April 24 slides. The idea is that if A is an n X n matrix and ¢ is an n-permutation
then

sign(o) A1y, -+ Ane, =0

unless o is the permutation (1,2,...,n), where every number is in order.

Indeed, given any other permutation o, let ¢ be the first number such that o; # 1.
We must then have o; = i for some j > . But then Aj,, = Aj; = 0 since A is upper
triangular. O]

Proof. Suppose that A = (A;;)1<ij<n 1S an n X n upper triangular matrix, meaning
that A; ; =0 for all 7 > j.

We prove this by induction on n, the number of columns (and rows) in an upper
triangular matrix. If n = 1 then A = (a) and det(A) = a by definition of det for 1 x 1
matrices. Now suppose that n > 1 and that the result holds for all (n —1) x (n —1)
upper triangular matrices. Then we compute det(A) by cofactor expansion along
row n. Theorem 4.4 then shows that

n

det(A) =Y (—1)" A, - det(A, ) = (—1)"" Ay, det(A,, ) = Ay, det(A,,),

j=1
since A, = Apo == A,,-1 =0. Now if Znn is an (n —1) x (n — 1) matrix and
is upper triangular with diagonal entries Ay 1, As2,..., Ap—1,,—1 so by the induction

hypothesis

det(A) = An,n det<An,n) = An,nAl,l to Anfl,nfl = Al,l te An,n;

which is precisely the product of the diagonal entries of A. ]

§4.24#24 If an nxn matrix A has a row consisting entirely of zeros then det(A) = 0.
ai
First write A = : for some row vectors ai,...a,. Then suppose that
Qn,
a; = 0 for some 1 <7 < n, then Theorem 4.3



a1

ai—1
det(A) = det 0

Qi1

=det| 0+0 |,

3] a

a;—1 Qi—1
= det 0 + det 0 ,

Qiy1 Qjq1

an an
= det(A) + det(A),
= 2det(A).

So subtracting det(A) from both sides we get det(A4) = 0.

§4.3#11 If M is skew-symmetric, then det(—M) = det(M"') = det(M) by The-
orem 4.8. Since —M = (—I)M, we also have det(—M) = det(—1I)det(M) =
(—=1)™det(M) by Theorem 4.7 and Exercise 23 from Section 4.2. If n is odd, then it
follows from det(M) = — det(M) that det(M) = 0. (Since we are working over the
complex numbers, 1+ 1 # 0.)

If n is even, then the above says nothing much. A (2k) x (2k) a skew-symmetric
matrix may or may not be invertible. The zero matrix is an example of a (2k) x (2k)



skew-symmetric matrix that is not invertible. The matrix B given by

_f O I
s=( % o)

where [}, is the k x k identity matrix and 0 is the £ X k zero matrix, then B is
invertible since rank(B) = 2k and B is clearly skew-symmetric.

Indeed, M = <(1) _0 ) is a skew-symmetric matrix with determinant 1.

§4.3#12 If Q € M,»,(R) is orthogonal then det(Q) = £1.

Recall a few facts about determinant, first we know that det(/) = 1 (where [ is
the identity matrix), second det(AB) = det(A)det(B) for all A, B € M,,(R) and
third that det(A") = det(A).

Using these facts we have

1 =det(I) = det(QQ") = det(Q) det(Q") = det(Q) det(Q) = det(Q)?,

but the only numbers in R whose squares are one are 1 and —1. Therefore det(Q) =
+1.



