Homework Notes - Week 5

Math 24 - Spring 2014

§3.1\#8* Theorem. If a matrix Q can be obtained from a a matrix P by an elementary row operation, then P can be obtained from Q by an elementary row operation of the same type.

Proof. There are three types of elementary row operations and we treat them separately.

Type 1. Suppose P is obtained from Q by interchanging two rows.
If this is the case, say that P is obtained from Q by interchanging rows i and j of Q. Then the matrix obtained by interchanging rows i and j of P is Q so that Q is obtained from P by interchanging two rows.

Type 2. Suppose P is obtained from Q by multiplying a row of Q by a nonzero scalar.

Say that P is obtained from Q by multiplying row i of Q by the nonzero scalar c. Then the matrix obtained from multiplying row i of P by the nonzero scalar c^{-1} is the matrix Q. So Q is obtained from P my multiplying a row by a nonzero scalar.

Type 3. Suppose P is obtained from Q by adding a scalar multiple of a row of Q to another row of Q.

Say that P is obtained from Q by adding c times row i of Q to row j of Q. Then the matrix obtained from adding $-c$ times row i of P to row j of P is precisely Q. Therefore Q is obtained from P by adding a scalar multiple of a row of P to another row of P.
$\S 3.2 \# \mathbf{6 b}$ For (b), we are asked to determine whether $T(f(x))=(x+1) f^{\prime}(x)$ is invertible. Since the derivative of a constant polynomial is zero, $1 \in \mathrm{~N}(T)$ and therefore T cannot be invertible since it is not one-to-one. We can also check this by
computing $[T]_{\beta}$ with respect to the standard ordered basis $\beta=\left\{1, x, x^{2}\right\}$ for $\mathrm{P}_{2}(\mathbb{R})$. Since $T(1)=0, T(x)=x+1, T\left(x^{2}\right)=(x+1)(2 x)=2 x^{2}+2 x$, we see that

$$
[T]_{\beta}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right)
$$

which visibly has rank at most 2 by Corollary 2(b) of Theorem 3.6 since the first column is 0 . Therefore T cannot be invertible by the remark following the definition of rank on page 152 .

For (f), we are asked to determine whether

$$
T(A)=\left(\operatorname{tr}(A), \operatorname{tr}\left(A^{t}\right), \operatorname{tr}(E A), \operatorname{tr}(A E)\right)
$$

is invertible, where $E=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
Let's compute $[T]_{\alpha}^{\gamma}$, where $\alpha=\left\{E^{11}, E^{12}, E^{21}, E^{22}\right\}$ is the standard basis of $\mathrm{M}_{2 \times 2}(\mathbb{R}) \gamma=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is the standard ordered basis for \mathbb{R}^{4}. To this end, it helps to note that $E A$ exchanges the two rows of A and $A E$ exhanges the two columns of A. Thus

$$
\begin{aligned}
& T\left(E^{11}\right)=\left(\operatorname{tr}\left(E^{11}\right), \operatorname{tr}\left(E^{11}\right), \operatorname{tr}\left(E^{21}\right), \operatorname{tr}\left(E^{12}\right)\right)=(1,1,0,0), \\
& T\left(E^{12}\right)=\left(\operatorname{tr}\left(E^{12}\right), \operatorname{tr}\left(E^{21}\right), \operatorname{tr}\left(E^{22}\right), \operatorname{tr}\left(E^{11}\right)\right)=(0,0,1,1), \\
& T\left(E^{21}\right)=\left(\operatorname{tr}\left(E^{21}\right), \operatorname{tr}\left(E^{12}\right), \operatorname{tr}\left(E^{11}\right), \operatorname{tr}\left(E^{22}\right)\right)=(0,0,1,1), \\
& T\left(E^{22}\right)=\left(\operatorname{tr}\left(E^{22}\right), \operatorname{tr}\left(E^{22}\right), \operatorname{tr}\left(E^{12}\right), \operatorname{tr}\left(E^{21}\right)\right)=(1,1,0,0),
\end{aligned}
$$

and hence

$$
[T]_{\alpha}^{\gamma}=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

This matrix visibly has rank at most 2 by Corollary 2(b) of Theorem 3.6 since it only has two distinct columns. Therefore T cannot be invertible by the remark following the definition of rank on page 152 .
§3.2\#13b* Theorem. The rank of any matrix equals the dimension of the subspace generated by its rows.

Proof. Let A be any matrix. By Corollary 2(a) of Theorem 2.6, $\operatorname{rank}(A)=\operatorname{rank}\left(A^{t}\right)$. Since the rows of A are the columns of the transpose A^{t}, it follows from Theorem 3.5 that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{t}\right)$ is the dimension of the subspace generated by the rows of A.
§3.2\#19 Theorem. If $A \in \mathrm{M}_{m \times n}(F)$ has rank m and $B \in \mathrm{M}_{n \times p}(F)$ has rank n, then $A B \in \mathrm{M}_{m \times p}(F)$ has rank m.

Proof. By definition, $\operatorname{rank}(A)=\operatorname{rank}\left(L_{A}\right)$ and $\operatorname{rank}(B)=\operatorname{rank}\left(L_{B}\right)$, where L_{A} : $F^{n} \rightarrow F^{m}$ and $L_{B}: F^{p} \rightarrow F^{n}$ are the associated left multiplication transformations. We are asked to compute $\operatorname{rank}(A B)=\operatorname{rank}\left(L_{A B}\right)=\operatorname{rank}\left(L_{A} L_{B}\right)$ (see Theo$\operatorname{rem} 2.15(\mathrm{e})$) given that $\operatorname{rank}(A)=m$ and $\operatorname{rank}(B)=n$. To say that $\operatorname{rank}\left(L_{A}\right)=m$ means that L_{A} is onto; to say that $\operatorname{rank}\left(L_{A}\right)=n$ means that L_{A} is onto. Since the composition of two onto functions is onto, we see that $\operatorname{rank}\left(L_{A} L_{B}\right)=m$. Therefore $\operatorname{rank}(A B)=m$.
$\S 3.3 \# 7$ be The system (b) has the immediately obvious solution $x_{1}=1, x_{2}=$ $0, x_{3}=0$. For the system (e), if we add 3 times the first equation from the last and then subtract 2 times the second equation to the last, we obtain $0 x_{1}+0 x_{2}+0 x_{3}=1$. Since that equation is clearly unsolvable, the system (e) cannot have a solution.
$\S 3.3 \# 10$ Theorem. If the coefficient matrix of a system of m linear equations with n unknowns has rank m, then the system has a solution.

Proof. Let A be the $m \times n$ coefficient matrix of a system of m linear equations with n unknowns and suppose that $\operatorname{rank}(A)=m$. To see that the system $A x=b$ always has a solution, first recall that $\operatorname{rank}(A)=\operatorname{rank}\left(L_{A}\right)=m$ where $L_{A}: F^{n} \rightarrow F^{m}$ is left multiplication by A. Since $\operatorname{dim}\left(\mathrm{R}\left(L_{A}\right)\right)=\operatorname{rank}\left(L_{A}\right)=m=\operatorname{dim}\left(F^{m}\right)$, we must have that L_{A} is onto. By definition of onto, for every $b \in F^{m}$ there is an $x \in F^{n}$ such that $b=L_{A}(x)=A x$. In other words, for every $b \in F^{m}$, the system $A x=b$ does have a solution.

