
Homework Notes — Week 5

Math 24 — Spring 2014

§3.1#8* Theorem. If a matrix Q can be obtained from a a matrix P by an
elementary row operation, then P can be obtained from Q by an elementary row
operation of the same type.

Proof. There are three types of elementary row operations and we treat them sepa-
rately.

Type 1. Suppose P is obtained from Q by interchanging two rows.

If this is the case, say that P is obtained from Q by interchanging rows i
and j of Q. Then the matrix obtained by interchanging rows i and j of P
is Q so that Q is obtained from P by interchanging two rows.

Type 2. Suppose P is obtained from Q by multiplying a row of Q by a nonzero
scalar.

Say that P is obtained from Q by multiplying row i of Q by the nonzero
scalar c. Then the matrix obtained from multiplying row i of P by the
nonzero scalar c−1 is the matrix Q. So Q is obtained from P my multiplying
a row by a nonzero scalar.

Type 3. Suppose P is obtained from Q by adding a scalar multiple of a row of Q to
another row of Q.

Say that P is obtained from Q by adding c times row i of Q to row j of Q.
Then the matrix obtained from adding −c times row i of P to row j of P
is precisely Q. Therefore Q is obtained from P by adding a scalar multiple
of a row of P to another row of P .

§3.2#6bf For (b), we are asked to determine whether T (f(x)) = (x + 1)f ′(x)
is invertible. Since the derivative of a constant polynomial is zero, 1 ∈ N(T ) and
therefore T cannot be invertible since it is not one-to-one. We can also check this by
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computing [T ]β with respect to the standard ordered basis β = {1, x, x2} for P2(R).
Since T (1) = 0, T (x) = x+ 1, T (x2) = (x+ 1)(2x) = 2x2 + 2x, we see that

[T ]β =

0 1 0
0 1 2
0 0 2

 ,

which visibly has rank at most 2 by Corollary 2(b) of Theorem 3.6 since the first
column is 0. Therefore T cannot be invertible by the remark following the definition
of rank on page 152.

For (f), we are asked to determine whether

T (A) = (tr(A), tr(At), tr(EA), tr(AE))

is invertible, where E =

(
0 1
1 0

)
.

Let’s compute [T ]γα, where α = {E11, E12, E21, E22} is the standard basis of
M2×2(R) γ = {e1, e2, e3, e4} is the standard ordered basis for R4. To this end, it helps
to note that EA exchanges the two rows of A and AE exhanges the two columns of
A. Thus

T (E11) = (tr(E11), tr(E11), tr(E21), tr(E12)) = (1, 1, 0, 0),

T (E12) = (tr(E12), tr(E21), tr(E22), tr(E11)) = (0, 0, 1, 1),

T (E21) = (tr(E21), tr(E12), tr(E11), tr(E22)) = (0, 0, 1, 1),

T (E22) = (tr(E22), tr(E22), tr(E12), tr(E21)) = (1, 1, 0, 0),

and hence

[T ]γα =


1 0 0 1
1 0 0 1
0 1 1 0
0 1 1 0

 .

This matrix visibly has rank at most 2 by Corollary 2(b) of Theorem 3.6 since it only
has two distinct columns. Therefore T cannot be invertible by the remark following
the definition of rank on page 152.

§3.2#13b* Theorem. The rank of any matrix equals the dimension of the sub-
space generated by its rows.

Proof. Let A be any matrix. By Corollary 2(a) of Theorem 2.6, rank(A) = rank(At).
Since the rows of A are the columns of the transpose At, it follows from Theorem 3.5
that rank(A) = rank(At) is the dimension of the subspace generated by the rows
of A.

2



§3.2#19 Theorem. If A ∈ Mm×n(F ) has rank m and B ∈ Mn×p(F ) has rank n,
then AB ∈ Mm×p(F ) has rank m.

Proof. By definition, rank(A) = rank(LA) and rank(B) = rank(LB), where LA :
F n → Fm and LB : F p → F n are the associated left multiplication transforma-
tions. We are asked to compute rank(AB) = rank(LAB) = rank(LALB) (see Theo-
rem 2.15(e)) given that rank(A) = m and rank(B) = n. To say that rank(LA) = m
means that LA is onto; to say that rank(LA) = n means that LA is onto. Since the
composition of two onto functions is onto, we see that rank(LALB) = m. Therefore
rank(AB) = m.

§3.3#7be The system (b) has the immediately obvious solution x1 = 1, x2 =
0, x3 = 0. For the system (e), if we add 3 times the first equation from the last and
then subtract 2 times the second equation to the last, we obtain 0x1 +0x2 +0x3 = 1.
Since that equation is clearly unsolvable, the system (e) cannot have a solution.

§3.3#10 Theorem. If the coefficient matrix of a system of m linear equations
with n unknowns has rank m, then the system has a solution.

Proof. Let A be the m× n coefficient matrix of a system of m linear equations with
n unknowns and suppose that rank(A) = m. To see that the system Ax = b always
has a solution, first recall that rank(A) = rank(LA) = m where LA : F n → Fm is left
multiplication by A. Since dim(R(LA)) = rank(LA) = m = dim(Fm), we must have
that LA is onto. By definition of onto, for every b ∈ Fm there is an x ∈ F n such that
b = LA(x) = Ax. In other words, for every b ∈ Fm, the system Ax = b does have a
solution.
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