Homework Notes — Week 5

Math 24 — Spring 2014

83.1#8* Theorem. If a matrix () can be obtained from a a matriz P by an
elementary row operation, then P can be obtained from @Q by an elementary row
operation of the same type.

Proof. There are three types of elementary row operations and we treat them sepa-

rately.

Type 1.

Type 2.

Type 3.

Suppose P is obtained from @) by interchanging two rows.

If this is the case, say that P is obtained from () by interchanging rows ¢
and j of (). Then the matrix obtained by interchanging rows ¢ and j of P
is () so that () is obtained from P by interchanging two rows.

Suppose P is obtained from () by multiplying a row of ) by a nonzero
scalar.

Say that P is obtained from ) by multiplying row ¢ of ) by the nonzero
scalar ¢. Then the matrix obtained from multiplying row ¢ of P by the
nonzero scalar ¢! is the matrix Q. So Q is obtained from P my multiplying
a row by a nonzero scalar.

Suppose P is obtained from @) by adding a scalar multiple of a row of @) to
another row of Q.

Say that P is obtained from () by adding ¢ times row i of () to row j of Q.
Then the matrix obtained from adding —c times row ¢ of P to row j of P
is precisely (). Therefore () is obtained from P by adding a scalar multiple
of a row of P to another row of P. O

§3.2#46bf For (b), we are asked to determine whether T'(f(z)) = (z + 1)f'(x)
is invertible. Since the derivative of a constant polynomial is zero, 1 € N(7") and
therefore T cannot be invertible since it is not one-to-one. We can also check this by



computing [T]s with respect to the standard ordered basis § = {1, z,2?} for Py(R).
Since T(1) =0, T(z) =z + 1, T(2?) = (z + 1)(2z) = 22* + 2z, we see that
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T]s = 2|,
2
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which visibly has rank at most 2 by Corollary 2(b) of Theorem 3.6 since the first
column is 0. Therefore T' cannot be invertible by the remark following the definition
of rank on page 152.

For (f), we are asked to determine whether
T(A) = (tr(A), tr(AY), tr(EA), tr(AE))

01
1 0)°

Let’s compute [T]1, where o = {E' E'? E?' E*} is the standard basis of
Mo (R) v = {ey, e, €3, €4} is the standard ordered basis for R*. To this end, it helps
to note that F A exchanges the two rows of A and AE exhanges the two columns of

A. Thus

is invertible, where F =

T(E"™) = (tr(E™), tr(B™), tr(E*), tr(E'?)) = (1,1,0,0),
T(EY™) = (tr(E"™), tr(E*), tr(E*), tr(E')) = (0,0, 1,1),
T(E*) = (tr(E*), tr(E™), tr(E™), tr(E?%)) = (0,0,1, 1),
T(E?) = (tr(E*),tr(E*), tr(E?), tr(E*")) = (1,1,0,0),
and hence
1 001
1 001
Tla=10 11 0
0110

This matrix visibly has rank at most 2 by Corollary 2(b) of Theorem 3.6 since it only
has two distinct columns. Therefore T cannot be invertible by the remark following
the definition of rank on page 152.

§3.24#13b* Theorem. The rank of any matriz equals the dimension of the sub-
space generated by its rows.

Proof. Let A be any matrix. By Corollary 2(a) of Theorem 2.6, rank(A) = rank(A?).
Since the rows of A are the columns of the transpose A?, it follows from Theorem 3.5

that rank(A) = rank(A") is the dimension of the subspace generated by the rows
of A. O



§3.2#19 Theorem. If A € M,,«,,(F) has rank m and B € M,,»,(F') has rank n,
then AB € M,,,»,(F') has rank m.

Proof. By definition, rank(A) = rank(L,4) and rank(B) = rank(Lg), where Ly4 :
" — F™ and L : F? — F™ are the associated left multiplication transforma-
tions. We are asked to compute rank(AB) = rank(Lap) = rank(LaLg) (see Theo-
rem 2.15(e)) given that rank(A) = m and rank(B) = n. To say that rank(Ls) = m
means that L, is onto; to say that rank(L4) = n means that L, is onto. Since the
composition of two onto functions is onto, we see that rank(L4Lg) = m. Therefore

rank(AB) = m. O

§3.3#7be The system (b) has the immediately obvious solution z; = 1,25 =
0,23 = 0. For the system (e), if we add 3 times the first equation from the last and
then subtract 2 times the second equation to the last, we obtain 0z + 0xs + 0x3 = 1.
Since that equation is clearly unsolvable, the system (e) cannot have a solution.

83.3#10 Theorem. If the coefficient matriz of a system of m linear equations
with n unknowns has rank m, then the system has a solution.

Proof. Let A be the m x n coefficient matrix of a system of m linear equations with
n unknowns and suppose that rank(A) = m. To see that the system Az = b always
has a solution, first recall that rank(A) = rank(L4) = m where L4 : F™ — F™ is left
multiplication by A. Since dim(R(L,)) = rank(L4) = m = dim(F™), we must have
that L, is onto. By definition of onto, for every b € F™ there is an z € F" such that
b= La(x) = Az. In other words, for every b € F™, the system Az = b does have a
solution. [



