Homework Notes — Week 4

Math 24 -Spring 2014

§2.4#4 Let A and B be $n \times n$ invertible matrices. We want to show that AB is invertible and that $(AB)^{-1} = B^{-1}A^{-1}$.

Recall that an $n \times n$ matrix X is *invertible* if there is an $n \times n$ matrix Y with XY = YX = I, the $n \times n$ identity matrix.

So to see that X = AB is invertible we only need to find a matrix Y such that (AB)Y = Y(AB) = I. Well, the question actually tells us what matrix we should try to use for Y, namely $Y = B^{-1}A^{-1}$.

Now we actually need to see if this choice works, and to see this we recall a few facts, namely the fact that matrix multiplication is associative, and that

$$AA^{-1} = A^{-1}A = I (1)$$

$$BB^{-1} = B^{-1}B = I.$$
 (2)

Now we check that (AB)Y = Y(AB) = I,

$$\begin{aligned} (AB)Y &= A(BY) & (\text{associativity of matrix multiplication}) \\ &= A(B(B^{-1}A^{-1})) & (\text{definition of } Y) \\ &= A((BB^{-1})A^{-1}) & (\text{associativity of matrix multiplication}) \\ &= A(IA^{-1}) & (\text{equation } (2)) \\ &= AA^{-1} & (I \text{ is the identity matrix}) \\ &= I & (\text{equation } (1)) \end{aligned}$$

$$\begin{split} Y(AB) &= (YA)B & (\text{associativity of matrix multiplication}) \\ &= ((B^{-1}A^{-1})A)B & (\text{definition of } Y) \\ &= (B^{-1}(A^{-1}A))B & (\text{associativity of matrix multiplication}) \\ &= (B^{-1}I)B & (\text{equation (1)}) \\ &= B^{-1}B & (I \text{ is the identity matrix}) \\ &= I & (\text{equation (2)}). \end{split}$$

So we have seen that $(AB)(B^{-1}A^{-1}) = (B^{-1}A^{-1})AB = I$, which means exactly that $(AB)^{-1} = B^{-1}A^{-1}$.

§2.4#7 Let A be an $n \times n$ matrix. We need to show that (a) if $A^2 = 0$ then A is not invertible, and (b) determine whether A could be invertible if AB = 0 for some nonzero $n \times n$ matrix B.

For (a), what would happen if A were invertible? In that case there exists some $n \times n$ matrix called A^{-1} such that $AA^{-1} = A^{-1}A = I$. An idea here would be to multiply both sides of $A^2 = 0$ by A^{-1} on the left to obtain a new equation, namely

(0 = 0X = X0 for any matrix $X)$
(by our assumption)
$(A^2 = AA)$
(associativity of matrix multiplication)
(since $A^{-1}A = I$)
(I is the identity matrix).

But now A = 0 which is **NOT** and invertible matrix. So if A is invertible then $A^2 \neq 0$ which is the contrapositive of the statement we were asked to prove.

For (b), the answer is no. Suppose that A is invertible and that AB = 0 for some $n \times n$ matrix B, then we can demonstrate that in face B = 0, so there can be no nonzero B with the property that AB = 0.

Specifically we have that

$$B = IB$$

= $(A^{-1}A)B$
= $A^{-1}(AB)$
= $A^{-1}0$
= $0,$

exactly as predicted.

§2.4#16* Theorem. Let B be an invertible $n \times n$ matrix. The function Φ : $\mathsf{M}_{n \times n}(F) \to \mathsf{M}_{n \times n}(F)$ defined by $\Phi(A) = B^{-1}AB$ is an isomorphism.

Proof. First we need to verify that Φ is a linear transformation. Well if $C, D \in M_{n \times n}(F)$ and $a \in F$ then

$$\Phi(aC + D) = B^{-1}(aC + D)B$$

= $(B^{-1}(aC) + B^{-1}D)B$
= $B^{-1}(aC)B + B^{-1}DB$
= $aB^{-1}CB + B^{-1}DB$
= $a\Phi(C) + \Phi(D)$,

so Φ is a linear transformation.

Now we will find an inverse map to Φ . To this end, consider the map Ψ : $\mathsf{M}_{n \times n}(F) \to \mathsf{M}_{n \times n}(F)$ given by $\Psi(A) = BAB^{-1}$. A similar computation as with Φ shows that Ψ is a a linear transformation.

If $A \in \mathsf{M}_{n \times n}(F)$ then

$$\Phi \circ \Psi(A) = \Phi(BAB^{-1})$$

$$= B^{-1}(BAB^{-1})B$$

$$= (B^{-1}B)A(BB^{-1})$$

$$= I_nAI_n$$

$$= A,$$

$$\Psi \circ \Phi(A) = \Psi(B^{-1}AB)$$

$$= B(B^{-1}AB)B^{-1}$$

$$= (BB^{-1})A(BB^{-1})$$

$$= I_nAI_n$$

$$= A,$$

meaning exactly that $\Phi \circ \Psi = \Psi \circ \Phi = I_{\mathsf{M}_{n \times n}(F)}$, the identity transformation $\mathsf{M}_{n \times n}(F) \to \mathsf{M}_{n \times n}(F)$.

§2.5#6bd For each matrix A and ordered basis β , we need to find find $[L_A]_{\beta}$ and also find an invertible matrix Q such that $[L_A]_{\beta} = Q^{-1}AQ$.

(b)
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 and $\beta = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$

For the first part of the problem we can just compute what $[L_A]_\beta$ using the definition. In particular

$$L_A\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}1&2\\2&1\end{pmatrix}\begin{pmatrix}1\\1\end{pmatrix}$$
$$= \begin{pmatrix}3\\3\end{pmatrix}$$
$$= 3\begin{pmatrix}1\\1\end{pmatrix} + 0\begin{pmatrix}1\\-1\end{pmatrix}$$
$$L_A\begin{pmatrix}1\\-1\end{pmatrix} = \begin{pmatrix}1&2\\2&1\end{pmatrix}\begin{pmatrix}1\\-1\end{pmatrix}$$
$$= \begin{pmatrix}-1\\1\end{pmatrix}$$
$$= 0\begin{pmatrix}1\\1\end{pmatrix} + (-1)\begin{pmatrix}1\\-1\end{bmatrix}$$

so by definition $[L_A]_{\beta} = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$.

To do this problem, we appeal to the Corollary to Theorem 2.23 on page 115 of the textbook which tells us that the matrix $Q = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ satisfies the condition, i.e. that

$$[L_A]_{\beta} = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} = Q^{-1}AQ.$$
(d) $A = \begin{pmatrix} 13 & 1 & 4 \\ 1 & 13 & 4 \\ 4 & 4 & 10 \end{pmatrix}$ and $\beta = \left\{ \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$

Again we can compute $[L_A]_{\beta}$ just by computing L_A on the basis β ,

$$L_{A}\begin{pmatrix}1\\1\\-2\end{pmatrix} = \begin{pmatrix}13 & 1 & 4\\1 & 13 & 4\\4 & 4 & 10\end{pmatrix}\begin{pmatrix}1\\1\\-2\end{pmatrix}$$
$$= \begin{pmatrix}6\\6\\-12\end{pmatrix}$$
$$= 6\begin{pmatrix}1\\1\\-1\\-1\end{pmatrix} + 0\begin{pmatrix}1\\-1\\0\end{pmatrix} + 0\begin{pmatrix}1\\1\\1\\1\end{pmatrix},$$
$$L_{A}\begin{pmatrix}1\\1\\-2\end{pmatrix} = \begin{pmatrix}13 & 1 & 4\\1 & 13 & 4\\4 & 4 & 10\end{pmatrix}\begin{pmatrix}1\\-1\\0\end{pmatrix}$$
$$= \begin{pmatrix}12\\-12\\0\end{pmatrix}$$
$$= 0\begin{pmatrix}1\\1\\-2\end{pmatrix} + 12\begin{pmatrix}1\\-1\\0\end{pmatrix} + 0\begin{pmatrix}1\\1\\1\end{pmatrix},$$
$$L_{A}\begin{pmatrix}1\\1\\-2\end{pmatrix} = \begin{pmatrix}13 & 1 & 4\\1 & 13 & 4\\4 & 4 & 10\end{pmatrix}\begin{pmatrix}1\\1\\1\end{pmatrix}$$
$$= \begin{pmatrix}18\\18\\18\\18\end{pmatrix}$$
$$= 0\begin{pmatrix}1\\1\\-1\end{pmatrix} + 0\begin{pmatrix}1\\-1\\0\end{pmatrix} + 18\begin{pmatrix}1\\1\\1\end{pmatrix},$$

so that by definition

$$[L_A]_{\beta} = \left(\begin{array}{ccc} 6 & 0 & 0\\ 0 & 12 & 0\\ 0 & 0 & 18 \end{array}\right).$$

Now again we can use the corollary on page 115 of the textbook to assert that if

$$Q = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -2 & 0 & 1 \end{array}\right)$$

then $[L_A]_{\beta} = Q^{-1}AQ.$

- **§2.5#9** We want to show that "is similar to" is an equivalence relation on $M_{n \times n}(F)$. By the definition of equivalence relations, this problem has three basic parts:
 - (i) Reflexivity: A is always similar to A.
- (ii) Symmetry: If A is similar to B, then B is similar to A.
- (iii) Transitivity: If A is similar to B and B is similar to C, then A is similar to C.

We proceed to verify all three in order.

(i) If $A \in \mathsf{M}_{n \times n}(F)$ then A is similar to A.

To see that A is similar to A we must find a matrix $Q \in \mathsf{M}_{n \times n}(F)$ with $A = Q^{-1}AQ$. But $A = I^{-1}AI$ so Q = I will work.

(ii) If $A, B \in M_{n \times n}(F)$ and A is similar to B then B is similar to A.

Supposing that A is similar to B means that we have an invertible matrix $Q \in \mathsf{M}_{n \times n}(F)$ with $A = Q^{-1}BQ$. We want to prove that B is similar to A, so we must find a matrix $P \in \mathsf{M}_{n \times n}$ which is invertible and $B = P^{-1}AP$. Certainly thought $B = QAQ^{-1}$ so $P = Q^{-1}$ works.

(iii) If $A, B, C \in M_{n \times n}(F)$ where A is similar to B and B is similar to C then A is similar to C.

Since A is similar to B and B is similar to C there are invertible matrices $Q, P \in \mathsf{M}_{n \times n}(F)$ with

$$A = Q^{-1}BQ, \qquad \qquad B = P^{-1}CP.$$

But then

$$A = Q^{-1}BQ = Q^{-1}(P^{-1}AP)Q = (Q^{-1}P^{-1})A(PQ) = (PQ)^{-1}A(PQ)$$

where the last equality follows from the fact that $(PQ) = Q^{-1}P^{-1}$ (this is true by Exercise 4 in Section 2.4).

So the matrix T = PQ satisfies $A = T^{-1}CT$ so that A is similar to A.

§2.5#12* Theorem. Let $A \in M_{n \times n}(F)$ and let $\gamma = \{v_1, \ldots, v_n\}$ be an ordered basis for F^n . Then $[L_A]_{\gamma} = Q^{-1}AQ$ where Q is the $n \times n$ matrix whose jth column is the jth vector of γ .

Proof. First let $\beta = \{e_1, \ldots, e_n\}$ be the standard ordered basis for F^n , specifically e_i is the vector with a 1 in the *i*th coordinate and 0 everywhere else.

Then since $L_A(e_i)$ is the *i*th column of A, we have that $[L_A]_{\beta} = A$.

Then Theorem 2.23 $[L_A]\gamma = Q^{-1}[L_A]_{\beta}Q = Q^{-1}AQ$ where Q is the change of coordinates matrix that changes γ -coordinates into β -coordinates. So the *j*th column of Q is precisely $[v_j]\beta$.

The claim will follow if we can show that $[v_j]\beta = v_j$. In fact if $w \in F^n$ is any vector then $[w]_\beta = w$. To see this we note that there are $w_1, \ldots, w_n \in F$ with

$$w = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \sum_{k=1}^n w_k e_k$$

so by definition $[w]_{\beta} = w$.

This means that the *j*th column of Q is $[v_j]_{\beta} = v_j$ which is the *j*th vector of γ . \Box