Homework Notes - Week 4

Math 24 - Spring 2014

§2.4\#4 Let A and B be $n \times n$ invertible matrices. We want to show that $A B$ is invertible and that $(A B)^{-1}=B^{-1} A^{-1}$.

Recall that an $n \times n$ matrix X is invertible if there is an $n \times n$ matrix Y with $X Y=Y X=I$, the $n \times n$ identity matrix.

So to see that $X=A B$ is invertible we only need to find a matrix Y such that $(A B) Y=Y(A B)=I$. Well, the question actually tells us what matrix we should try to use for Y, namely $Y=B^{-1} A^{-1}$.

Now we actually need to see if this choice works, and to see this we recall a few facts, namely the fact that matrix multiplication is associative, and that

$$
\begin{array}{r}
A A^{-1}=A^{-1} A=I \\
B B^{-1}=B^{-1} B=I . \tag{2}
\end{array}
$$

Now we check that $(A B) Y=Y(A B)=I$,

$$
\begin{aligned}
(A B) Y & =A(B Y) & & \text { (associativity of matrix multiplication) } \\
& =A\left(B\left(B^{-1} A^{-1}\right)\right) & & \text { (definition of } Y) \\
& =A\left(\left(B B^{-1}\right) A^{-1}\right) & & \text { (associativity of matrix multiplication) } \\
& =A\left(I A^{-1}\right) & & \text { (equation }(2)) \\
& =A A^{-1} & & (I \text { is the identity matrix) } \\
& =I & & \text { (equation }(1))
\end{aligned}
$$

$$
\begin{aligned}
Y(A B) & =(Y A) B & & \text { (associativity of matrix multiplication) } \\
& =\left(\left(B^{-1} A^{-1}\right) A\right) B & & \text { (definition of } Y) \\
& =\left(B^{-1}\left(A^{-1} A\right)\right) B & & \text { (associativity of matrix multiplication) } \\
& =\left(B^{-1} I\right) B & & \text { (equation }(1)) \\
& =B^{-1} B & & (I \text { is the identity matrix) } \\
& =I & & \text { (equation }(2)) .
\end{aligned}
$$

So we have seen that $(A B)\left(B^{-1} A^{-1}\right)=\left(B^{-1} A^{-1}\right) A B=I$, which means exactly that $(A B)^{-1}=B^{-1} A^{-1}$.
$\S 2.4 \# 7$ Let A be an $n \times n$ matrix. We need to show that (a) if $A^{2}=0$ then A is not invertible, and (b) determine whether A could be invertible if $A B=0$ for some nonzero $n \times n$ matrix B.

For (a), what would happen if A were invertible? In that case there exista some $n \times n$ matrix called A^{-1} such that $A A^{-1}=A^{-1} A=I$. An idea here would be to multiply both sides of $A^{2}=0$ by A^{-1} on the left to obtain a new equation, namely

$$
\begin{aligned}
0 & =A^{-1} 0 & & (0=0 X=X 0 \text { for any matrix } X) \\
& =A^{-1}\left(A^{2}\right) & & (\text { by our assumption }) \\
& =A^{-1}(A A) & & \left(A^{2}=A A\right) \\
& =\left(A^{-1} A\right) A & & \text { (associativity of matrix multiplication) } \\
& =I A & & \left(\text { since } A^{-1} A=I\right) \\
& =A & & (I \text { is the identity matrix }) .
\end{aligned}
$$

But now $A=0$ which is NOT and invertible matrix. So if A is invertible then $A^{2} \neq 0$ which is the contrapositive of the statement we were asked to prove.

For (b), the answer is no. Suppose that A is invertible and that $A B=0$ for some $n \times n$ matrix B, then we can demonstrate that in face $B=0$, so there can be no nonzero B with the property that $A B=0$.

Specifically we have that

$$
\begin{aligned}
B & =I B \\
& =\left(A^{-1} A\right) B \\
& =A^{-1}(A B) \\
& =A^{-1} 0 \\
& =0,
\end{aligned}
$$

exactly as predicted.
§2.4\#16* Theorem. Let B be an invertible $n \times n$ matrix. The function Φ : $\mathrm{M}_{n \times n}(F) \rightarrow \mathrm{M}_{n \times n}(F)$ defined by $\Phi(A)=B^{-1} A B$ is an isomorphism.

Proof. First we need to verify that Φ is a linear transformation. Well if $C, D \in$ $\mathrm{M}_{n \times n}(F)$ and $a \in F$ then

$$
\begin{aligned}
\Phi(a C+D) & =B^{-1}(a C+D) B \\
& =\left(B^{-1}(a C)+B^{-1} D\right) B \\
& =B^{-1}(a C) B+B^{-1} D B \\
& =a B^{-1} C B+B^{-1} D B \\
& =a \Phi(C)+\Phi(D),
\end{aligned}
$$

so Φ is a linear transformation.
Now we will find an inverse map to Φ. To this end, consider the map Ψ : $\mathrm{M}_{n \times n}(F) \rightarrow \mathrm{M}_{n \times n}(F)$ given by $\Psi(A)=B A B^{-1}$. A similar computation as with Φ shows that Ψ is a a linear transformation.

If $A \in \mathrm{M}_{n \times n}(F)$ then

$$
\begin{aligned}
\Phi \circ \Psi(A) & =\Phi\left(B A B^{-1}\right) \\
& =B^{-1}\left(B A B^{-1}\right) B \\
& =\left(B^{-1} B\right) A\left(B B^{-1}\right) \\
& =I_{n} A I_{n} \\
& =A, \\
\Psi \circ \Phi(A) & =\Psi\left(B^{-1} A B\right) \\
& =B\left(B^{-1} A B\right) B^{-1} \\
& =\left(B B^{-1}\right) A\left(B B^{-1}\right) \\
& =I_{n} A I_{n} \\
& =A,
\end{aligned}
$$

meaning exactly that $\Phi \circ \Psi=\Psi \circ \Phi=I_{\mathrm{M}_{n \times n}(F)}$, the identity transformation $\mathrm{M}_{n \times n}(F) \rightarrow \mathrm{M}_{n \times n}(F)$.
$\S 2.5 \# 6$ bd For each matrix A and ordered basis β, we need to find find $\left[L_{A}\right]_{\beta}$ and also find an invertible matrix Q such that $\left[L_{A}\right]_{\beta}=Q^{-1} A Q$.
(b) $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$ and $\beta=\left\{\binom{1}{1},\binom{1}{-1}\right\}$

For the first part of the problem we can just compute what $\left[L_{A}\right]_{\beta}$ using the definition. In particular

$$
\begin{aligned}
L_{A}\binom{1}{1} & =\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\binom{1}{1} \\
& =\binom{3}{3} \\
& =3\binom{1}{1}+0\binom{1}{-1} \\
L_{A}\binom{1}{-1} & =\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\binom{1}{-1} \\
& =\binom{-1}{1} \\
& =0\binom{1}{1}+(-1)\binom{1}{-1}
\end{aligned}
$$

so by definition $\left[L_{A}\right]_{\beta}=\left(\begin{array}{rr}3 & 0 \\ 0 & -1\end{array}\right)$.
To do this problem, we appeal to the Corollary to Theorem 2.23 on page 115 of the textbook which tells us that the matrix $Q=\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$ satisfies the condition, i.e. that

$$
\left[L_{A}\right]_{\beta}=\left(\begin{array}{rr}
3 & 0 \\
0 & -1
\end{array}\right)=Q^{-1} A Q
$$

(d) $A=\left(\begin{array}{rrr}13 & 1 & 4 \\ 1 & 13 & 4 \\ 4 & 4 & 10\end{array}\right)$ and $\beta=\left\{\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right),\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$

Again we can compute $\left[L_{A}\right]_{\beta}$ just by computing L_{A} on the basis β,

$$
\begin{aligned}
& L_{A}\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)=\left(\begin{array}{rrr}
13 & 1 & 4 \\
1 & 13 & 4 \\
4 & 4 & 10
\end{array}\right)\left(\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right) \\
& =\left(\begin{array}{r}
6 \\
6 \\
-12
\end{array}\right) \\
& =6\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right)+0\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right)+0\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \\
& L_{A}\left(\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right)=\left(\begin{array}{rrr}
13 & 1 & 4 \\
1 & 13 & 4 \\
4 & 4 & 10
\end{array}\right)\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right) \\
& =\left(\begin{array}{r}
12 \\
-12 \\
0
\end{array}\right) \\
& =0\left(\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right)+12\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right)+0\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \\
& L_{A}\left(\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right)=\left(\begin{array}{rrr}
13 & 1 & 4 \\
1 & 13 & 4 \\
4 & 4 & 10
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& =\left(\begin{array}{l}
18 \\
18 \\
18
\end{array}\right) \\
& =0\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right)+0\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right)+18\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \text {, }
\end{aligned}
$$

so that by definition

$$
\left[L_{A}\right]_{\beta}=\left(\begin{array}{rrr}
6 & 0 & 0 \\
0 & 12 & 0 \\
0 & 0 & 18
\end{array}\right)
$$

Now again we can use the corollary on page 115 of the textbook to assert that if

$$
Q=\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 1 \\
-2 & 0 & 1
\end{array}\right)
$$

then $\left[L_{A}\right]_{\beta}=Q^{-1} A Q$.
$\S 2.5 \# 9$ We want to show that "is similar to" is an equivalence relation on $\mathrm{M}_{n \times n}(F)$. By the definition of equivalence relations, this problem has three basic parts:
(i) Reflexivity: A is always similar to A.
(ii) Symmetry: If A is similar to B, then B is similar to A.
(iii) Transitivity: If A is similar to B and B is similar to C, then A is similar to C. We proceed to verify all three in order.
(i) If $A \in \mathrm{M}_{n \times n}(F)$ then A is similar to A.

To see that A is similar to A we must find a matrix $Q \in \mathrm{M}_{n \times n}(F)$ with $A=$ $Q^{-1} A Q$. But $A=I^{-1} A I$ so $Q=I$ will work.
(ii) If $A, B \in \mathrm{M}_{n \times n}(F)$ and A is similar to B then B is similar to A.

Supposing that A is similar to B means that we have an invertible matrix $Q \in \mathrm{M}_{n \times n}(F)$ with $A=Q^{-1} B Q$. We want to prove that B is similar to A, so we must find a matrix $P \in \mathrm{M}_{n \times n}$ which is invertible and $B=P^{-1} A P$. Certainly thought $B=Q A Q^{-1}$ so $P=Q^{-1}$ works.
(iii) If $A, B, C \in \mathrm{M}_{n \times n}(F)$ where A is similar to B and B is similar to C then A is similar to C.
Since A is similar to B and B is similar to C there are invertible matrices $Q, P \in \mathrm{M}_{n \times n}(F)$ with

$$
A=Q^{-1} B Q, \quad B=P^{-1} C P
$$

But then

$$
A=Q^{-1} B Q=Q^{-1}\left(P^{-1} A P\right) Q=\left(Q^{-1} P^{-1}\right) A(P Q)=(P Q)^{-1} A(P Q)
$$

where the last equality follows from the fact that $(P Q)=Q^{-1} P^{-1}$ (this is true by Exercise 4 in Section 2.4).
So the matrix $T=P Q$ satisfies $A=T^{-1} C T$ so that A is similar to A.
$\S 2.5 \# 12$ * Theorem. Let $A \in \mathrm{M}_{n \times n}(F)$ and let $\gamma=\left\{v_{1}, \ldots, v_{n}\right\}$ be an ordered basis for F^{n}. Then $\left[L_{A}\right]_{\gamma}=Q^{-1} A Q$ where Q is the $n \times n$ matrix whose j th column is the j th vector of γ.

Proof. First let $\beta=\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard ordered basis for F^{n}, specifically e_{i} is the vector with a 1 in the i th coordinate and 0 everywhere else.

Then since $L_{A}\left(e_{i}\right)$ is the i th column of A, we have that $\left[L_{A}\right]_{\beta}=A$.
Then Theorem $2.23\left[L_{A}\right] \gamma=Q^{-1}\left[L_{A}\right]_{\beta} Q=Q^{-1} A Q$ where Q is the change of coordinates matrix that changes γ-coordinates into β-coordinates. So the j th column of Q is precisely $\left[v_{j}\right] \beta$.

The claim will follow if we can show that $\left[v_{j}\right] \beta=v_{j}$. In fact if $w \in F^{n}$ is any vector then $[w]_{\beta}=w$. To see this we note that there are $w_{1}, \ldots, w_{n} \in F$ with

$$
w=\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right)=\sum_{k=1}^{n} w_{k} e_{k}
$$

so by definition $[w]_{\beta}=w$.
This means that the j th column of Q is $\left[v_{j}\right]_{\beta}=v_{j}$ which is the j th vector of γ.

