
Take Home Exam 1

Sample Solutions

Problem A. Let T : R4 → R3 be the linear transformation defined by

T (x1, x2, x3, x4) =

 x1 + x3 − 2x4
2x2 − x3 + x4

2x1 + 2x2 + x3 − 3x4

 .

(1) Find a basis for the null space N(T ).

Solution — The equation T (x1, x2, x3, x4) = 0 leads to the system of equations

x1 + x3 − 2x4 = 0

2x2 − x3 + x4 = 0

2x1 + 2x2 + x3 − 3x4 = 0

Since the third equation is 2 times the first plus the second, this system is equivalent
to

x1 = −x3 + 2x4

2x2 = x3 − x4.

Setting, x3 = s and x4 = t, the general solution is
−s+ 2t
1
2s−

1
2 t

s
t

 = s


−1
1/2
1
0

+ t


2
−1/2

0
1

 .

Looking at the last two coordinates, we see that the generating vectors v1 = (−1, 1/2, 1, 0)
and v2 = (2,−1/2, 0, 1) are linearly independent. Therefore {v1, v2} is a basis for N(T ).

(2) Find a basis for the range space R(T ).

Solution — From the Claim in the proof of the Dimension Theorem from the April 9
slides, we know that if we extend the basis for N(T ) from part 1 to a basis {v1, v2, v3, v4}
for R4, then {T (v3), T (v4)} will be a basis for R(T ).
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The vectors {v1, v2, v3, v4} where v1 = (−1, 1/2, 1, 0), v2 = (2,−1/2, 0, 1), v3 = (0, 1, 0, 0),
v4 = (1, 0, 0, 0) span R4 since

a
b
c
d

 = c


−1
1/2
1
0

+ d


2
−1/2

0
1

+
2b− c+ d

2


0
1
0
0

+ (a+ c− 2d)


1
0
0
0


for any choice of scalars a, b, c, d. Since R4 has dimension 4, it follows from Corol-
lary 2(a) of Theorem 1.10 that {v1, v2, v3, v4} is a basis for R4. By the Claim mentioned
above, the vectors

T (v3) =

0
2
2

 , T (v4) =

1
0
2

 ,

form a basis for R(T ).

Problem B.

(1) Find a basis for the subspace

span

{(
1 −1
0 1

)
,

(
3 −1
−1 0

)
,

(
0 2
−1 −3

)
,

(
0 −1
4 −2

)
,

(
2 −1
2 −2

)}
of M2×2(R).

Solution — We proceed from left to right, eliminating elements that are linear com-
binations of the previous ones. Since(

0 2
−1 −3

)
= −3

(
1 −1
0 1

)
+

(
3 −1
−1 0

)
and

7

(
2 −1
2 −2

)
= −4

(
1 −1
0 1

)
+ 6

(
3 −1
−1 0

)
+ 5

(
0 −1
4 −2

)
,

we eliminate the third and fifth matrices to obtain the set

S =

{(
1 −1
0 1

)
,

(
3 −1
−1 0

)
,

(
0 −1
4 −2

)}
.

This set is linearly independent since

a

(
1 −1
0 1

)
+ b

(
3 −1
−1 0

)
+ c

(
0 −1
4 −2

)
=

(
0 0
0 0

)
.
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Leads to the equations a = −3b = 2c and b = 4c, which together imply that a = b =
c = 0.

Since, as we have verified above, the five given matrices are in span(S), we conclude
that S is a basis for the given subspace of M2×2(R).

(2) Suppose α = {x1, x2, x3} and β = {y1, y2, y3} are two ordered bases for a vector space
V over the field R of real numbers. Given that

x1 = 2y2 + y3, x2 = 2y1 + 2y3, x2 − x3 = y1 − y2,

find the change of coordinate matrix Q that converts α-coordinates into β-coordinates
as well as the change of coordinate matrix Q−1 that converts β-coordinates into α-
coordinates.

Solution — Since x1 = 2y2 + y3, x2 = 2y1 + 2y3, and

x3 = x2 − y1 + y2 = y1 + y2 + y3,

we see that

[x1]β = (0, 2, 1), [x2]β = (2, 0, 2), [x3]β = (1, 1, 1).

Therefore,

Q =

0 2 1
2 0 1
1 2 1


is the matrix that converts α-coordinates into β-coordinates.

Solving the given equations for y1, y2, y3 in terms of x1, x2, x3, we obtain

y1 = −x1 − 1
2x2 + 2x3, y2 = −1

2x2 + x3, y3 = x1 + x2 − 2x3.

Therefore

[y1]α = (−1,−1/2, 2), [y2]α = (0,−1/2, 1), [y3]α = (1, 1,−2)

and hence

Q−1 =

 −1 0 1
−1/2 −1/2 1

2 1 −2


is the matrix that converts β-coordinates into α-coordinates.

To be sure, we can check that QQ−1 = I = Q−1Q.
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(3) Let T : P2(R)→ P2(R) be the linear transformation such that

T (1) = 2x, T (x+ 1) = 0, T (x2 + x+ 1) = x2 + x+ 1.

Find the matrix representation [T ]γ with respect to the standard ordered basis γ =
{1, x, x2} for P2(R).

Solution — From the given information and the fact that T is linear, we have T (1) =
2x,

T (x) = T (x+ 1)− T (1) = −2x,

and
T (x2) = T (x2 + x+ 1)− T (x+ 1) = x2 + x+ 1.

Therefore, after reading the γ-coordinates of each result,

[T ]γ = [T ]γγ =

0 0 1
2 −2 1
0 0 1

 .

Problem C.

(1) Show that an n × n matrix A over the field F is invertible if and only if its columns
form a basis for Fn.

Solution — There are several ways to go about this; the following are just one of
hundreds of possible solutions you could do using just the material from Chapters 1
& 2.

First, suppose that A is invertible. We will show that the columns v1, v2, . . . , vn of A
are linearly independent. Observe that, by definition of matrix multiplication,

Ax = x1v1 + x2v2 + · · ·+ xnvn,

where x = (x1, x2, . . . , xn) is any vector in Fn. Therefore, we can interpret Ax as a
linear combination of the columns of A with coefficients x1, x2, . . . , xn. If A is invertible
with inverse A−1, then Ax = 0 implies that x = A−1Ax = A−10 = 0. Therefore, the
only linear combination of the columns of A that yields 0 is the trivial one. Thus, if A
is invertible then the columns of A are linearly independent. Since A has n columns
and dim(Fn) = n, it follows from Corollary 2(a) of Theorem 1.10 that {v1, v2, . . . , vn}
form a basis for Fn.

Next, suppose the columns of A form an ordered basis β = {v1, v2, . . . , vn} for Fn.
Note that A = [IFn ]αβ , where α = {e1, e2, . . . , en} is the standard ordered basis for
Fn. Thus A is the change-of-coordinate matrix from β to α. By Theorem 2.22(a), the

matrix A must be invertible. In fact, A−1 = [IFn ]βα.
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(2) Determine all possible a, b ∈ R for which the matrixa 1 2
0 1 b
1 1 2


is not invertible.

Solution — If b = 2 (and a is any real number) then the last column is twice the
second and hence the matrix is not invertible by part 1.

If b 6= 2, then the span of the last two columns is

W = {(x, y, z) ∈ R3 : x = z}

since xy
x

 =
2y − bx
2− b

1
1
1

+
x− y
2− b

2
b
2

 .

The first column belongs to W exactly when a = 1. In all other cases, by Theorem 1.7,
the three columns of the matrix are linearly independent and therefore form a basis
for R3 by Corollary 2(b) of Theorem 1.10. So, by part 1, when b 6= 2, the matrix is
not invertible if and only if a = 1.

To summarize the matrix is not invertible precisely when either b = 2 or a = 1. In
other words, the set of pairs (a, b) ∈ R2 for which the given matrix is not invertible is
the union of two lines, the line a = 1 and the line b = 2.

Problem D. Suppose S : R3 → R5 and T : R5 → R3 are linear transformations that
both have rank 3.

(1) Could T have a right inverse? A left inverse? Explain.

Solution — From the April 16 slides, we know that (i) T has a right inverse if and
only if it is onto and (ii) T has a left inverse if and only if it is one-to-one.

It is definitely possible for T to be onto. In fact it must be onto, since rank(T ) = 3 =
dim(R3). Therefore, by (i), T must have a right inverse.

It is not possible for T to be one-to-one. By the Dimension Theorem, rank(T ) +
nullity(T ) = dim(R5) = 5. Since rank(T ) = 3, we must have nullity(T ) = 2. By
Theorem 2.4, T is one-to-one exactly when N(T ) = {0}. Since N(T ) 6= {0}, T is not
one-to-one and hence T does not have a left inverse.
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(2) What is the smallest possible rank for TS? Explain and find a pair of such linear
transformations where this minimal rank is achieved.

Solution — Since S has rank 3, R(S) is a 3-dimensional subspace of R5. Also, N(T ) is a
2-dimensional subspace of R5 by the Dimension Theorem, since nullity(T ) = dim(R5)−
rank(T ) = 2 We cannot have R(S) ⊆ N(T ) since the former has larger dimension
than the latter. Therefore TS cannot be the zero transformation, which means that
rank(TS) ≥ 1 because the zero transformation is the only linear transformation with
rank 0.

It turns out that rank(TS) = 1 is achievable. For example, if

S(x, y, z) = (x, 0, y, 0, z), T (a1, a2, a3, a4, a5) = (a2, a3, a4),

both of which have rank 3, then

TS(x, y, z) = (0, y, 0)

which has rank 1 since R(TS) = span{(0, 1, 0)}.

(3) What is the largest possible rank for ST? Explain and find a pair of such linear
transformations where this maximal rank is achieved.

Solution — Since R(ST ) ⊆ R(S) (because S(T (x)) ∈ R(S) for every x ∈ R5) we must
have rank(ST ) ≤ rank(S) = 3. It is possible to have rank(ST ) = 3. For example, if

S(x, y, z) = (x, y, z, 0, 0), T (a1, a2, a3, a4, a5) = (a1, a2, a3),

both of which have rank 3, then

ST (a1, a2, a3, a4, a5) = (a1, a2, a3, 0, 0)

has rank 3 too since R(ST ) = span{e1, e2, e3}.
In fact, since T is onto, R(ST ) = R(S) and therefore ST has rank exactly 3.

(4) Could ST be invertible? How about TS? Explain.

Solution — By part 3, we know that rank(ST ) ≤ 3. Since an invertible linear trans-
formation R5 → R5 must have rank 5 by the last theorem of the April 16 slides, we
see that ST couldn’t be invertible.

However, TS can be invertible. This will happen if S is a right inverse of T, as we
determined possible in part 1. In fact, as we observed at the end of part 3, TS is
always invertible since it always has rank 3.
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Problem E. Let V be an n-dimensional vector space over the field F and let I denote
the identity transformation on V.

A linear transformation P : V → V is said to have property Π if P 2 = P, i.e.,
P (P (x)) = P (x) for every x ∈ V.

(1) Show that if α = {v1, v2, . . . , vn} is any ordered basis for V and if 0 ≤ d ≤ n, then the
linear transformation Pαd : V→ V such that

Pαd (vi) =

{
vi if 1 ≤ i ≤ d,

0 if d+ 1 ≤ i ≤ n,

has property Π. (Note that Pα0 = T0 and Pαn = I.)

Solution — Applying the definition of Pαd twice, we see that

Pαd (Pαd (vi)) =

{
Pαd (vi) if 1 ≤ i ≤ d,

Pαd (0) if d+ 1 ≤ i ≤ n,
=

{
vi if 1 ≤ i ≤ d,

0 if d+ 1 ≤ i ≤ n,
.

Since α is a basis for V, it follows from the uniqueness part of Theorem 2.6 that
(Pαd )2 = Pαd .

(2) Show that if P : V→ V is a linear transformation with property Π, then I−P : V→ V
is also a linear transformation with property Π.

Solution — Using the properties listed in Theorem 2.10, we see that

(I − P )2 = (I − P )(I − P ) = I(I − P )− P (I − P ) = (I − P )− (P − P 2) = I − P,

since P 2 = P.

(3) Show that if P : V → V is a linear transformation with property Π, then R(P ) =
N(I − P ).

Solution — Since (I − P )P = P − P 2 = P − P = T0 by the properties listed in
Theorem 2.10, it follows that R(P ) ⊆ N(I −P ). Indeed, if y ∈ R(P ) then y = P (x) for
some x ∈ V and then (I − P )(y) = (I − P )(P (x)) = 0.

To see that N(I − P ) ⊆ R(P ), suppose x ∈ N(I − P ). Then 0 = (I − P )(x) =
I(x)− P (x) = x− P (x). But then P (x) = x, which means that x = P (x) ∈ R(P ).

Since R(P ) ⊆ N(I − P ) and N(I − P ) ⊆ R(P ), we conclude that R(P ) = N(I − P ).
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(4) Show that if P : V→ V is a linear transformation with property Π, then N(P )∩R(P ) =
{0}.

Solution — By part 3, this is equivalent to showing that N(P ) ∩ N(I − P ) = {0}. So
suppose x ∈ N(P ) ∩ N(I − P ). Then 0 = P (x) and 0 = (I − P )(x) = I(x) − P (x) =
x− P (x). It follows from this that x = P (x) = 0. Since x was an arbitrary element of
N(P ) ∩ N(I − P ), we conclude that N(P ) ∩ N(I − P ) ⊆ {0}.
Because every subspace of V contains 0, we see that N(P )∩R(P ) = N(P )∩N(I−P ) =
{0}.

(5) Show that if P : V → V is a linear transformation with property Π, then there are
an ordered basis α = {v1, v2, . . . , vn} for V and 0 ≤ d ≤ n such that P = Pαd (as
defined in part 1). That is, every linear transformation with property Π is of the form
Pαd described in part 1 for some choice of ordered basis α for V and some choice of
0 ≤ d ≤ n.

Solution — Given a linear transformation P : V → V with property Π, we need to
find a basis α = {v1, . . . , vn} and an integer 0 ≤ d ≤ n such that P = Pαd . The number
d will be the rank of P. Note that n−d will then be the nullity of P by the Dimension
Theorem.

To choose the basis, first pick a basis {v1, . . . , vd} for R(P ) and then pick a ba-
sis {vd+1, . . . , vn} for N(P ) (note that there are appropriately n − d vectors in the
latter list). By part 3, R(P ) ∩ N(P ) = {0} and thus, by Special Assignment 2,
α = {v1, . . . , vd, vd+1, . . . , vn} forms a basis for the direct sum R(P ) + N(P ). Since
V has dimension n and α consists of n linearly independent vectors, it follows from
Corollary 2(b) of Theorem 1.10 that α is actually a basis for V (and therefore that
V = R(P ) + N(P )).

I claim that P = Pαd . By Theorem 2.6, it suffices to check that P (vi) = Pαd (vi) for
i = 1, . . . , n. We consider two cases:

• If 1 ≤ i ≤ d, then vi ∈ R(P ) = N(I − P ) by part 3. Therefore, vi − P (vi) = 0 or
P (vi) = vi. By definition of Pαd , P

α
d (vi) = vi = P (vi), as required.

• If d + 1 ≤ i ≤ n, then vi ∈ N(P ), which means that P (vi) = 0. By definition of
Pαd , P

α
d (vi) = 0 = P (vi), as required.
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