Take Home Exam 1

Sample Solutions

Problem A. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\begin{array}{c}
x_{1}+x_{3}-2 x_{4} \\
2 x_{2}-x_{3}+x_{4} \\
2 x_{1}+2 x_{2}+x_{3}-3 x_{4}
\end{array}\right) .
$$

(1) Find a basis for the null space $\mathrm{N}(T)$.

Solution - The equation $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=0$ leads to the system of equations

$$
\begin{aligned}
x_{1}+x_{3}-2 x_{4} & =0 \\
2 x_{2}-x_{3}+x_{4} & =0 \\
2 x_{1}+2 x_{2}+x_{3}-3 x_{4} & =0
\end{aligned}
$$

Since the third equation is 2 times the first plus the second, this system is equivalent to

$$
\begin{aligned}
x_{1} & =-x_{3}+2 x_{4} \\
2 x_{2} & =x_{3}-x_{4} .
\end{aligned}
$$

Setting, $x_{3}=s$ and $x_{4}=t$, the general solution is

$$
\left(\begin{array}{c}
-s+2 t \\
\frac{1}{2} s-\frac{1}{2} t \\
s \\
t
\end{array}\right)=s\left(\begin{array}{c}
-1 \\
1 / 2 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{c}
2 \\
-1 / 2 \\
0 \\
1
\end{array}\right)
$$

Looking at the last two coordinates, we see that the generating vectors $v_{1}=(-1,1 / 2,1,0)$ and $v_{2}=(2,-1 / 2,0,1)$ are linearly independent. Therefore $\left\{v_{1}, v_{2}\right\}$ is a basis for $\mathrm{N}(T)$.
(2) Find a basis for the range space $\mathrm{R}(T)$.

Solution - From the Claim in the proof of the Dimension Theorem from the April 9 slides, we know that if we extend the basis for $\mathrm{N}(T)$ from part 1 to a basis $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ for \mathbb{R}^{4}, then $\left\{T\left(v_{3}\right), T\left(v_{4}\right)\right\}$ will be a basis for $\mathrm{R}(T)$.

The vectors $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ where $v_{1}=(-1,1 / 2,1,0), v_{2}=(2,-1 / 2,0,1), v_{3}=(0,1,0,0)$, $v_{4}=(1,0,0,0)$ span \mathbb{R}^{4} since

$$
\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=c\left(\begin{array}{c}
-1 \\
1 / 2 \\
1 \\
0
\end{array}\right)+d\left(\begin{array}{c}
2 \\
-1 / 2 \\
0 \\
1
\end{array}\right)+\frac{2 b-c+d}{2}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)+(a+c-2 d)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

for any choice of scalars a, b, c, d. Since \mathbb{R}^{4} has dimension 4 , it follows from Corollary 2 (a) of Theorem 1.10 that $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for \mathbb{R}^{4}. By the Claim mentioned above, the vectors

$$
T\left(v_{3}\right)=\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right), \quad T\left(v_{4}\right)=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right),
$$

form a basis for $\mathrm{R}(T)$.

Problem B.

(1) Find a basis for the subspace

$$
\operatorname{span}\left\{\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
3 & -1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 2 \\
-1 & -3
\end{array}\right),\left(\begin{array}{ll}
0 & -1 \\
4 & -2
\end{array}\right),\left(\begin{array}{ll}
2 & -1 \\
2 & -2
\end{array}\right)\right\}
$$

of $M_{2 \times 2}(\mathbb{R})$.
Solution - We proceed from left to right, eliminating elements that are linear combinations of the previous ones. Since

$$
\left(\begin{array}{cc}
0 & 2 \\
-1 & -3
\end{array}\right)=-3\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
3 & -1 \\
-1 & 0
\end{array}\right)
$$

and

$$
7\left(\begin{array}{ll}
2 & -1 \\
2 & -2
\end{array}\right)=-4\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)+6\left(\begin{array}{cc}
3 & -1 \\
-1 & 0
\end{array}\right)+5\left(\begin{array}{ll}
0 & -1 \\
4 & -2
\end{array}\right)
$$

we eliminate the third and fifth matrices to obtain the set

$$
S=\left\{\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
3 & -1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
4 & -2
\end{array}\right)\right\} .
$$

This set is linearly independent since

$$
a\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)+b\left(\begin{array}{cc}
3 & -1 \\
-1 & 0
\end{array}\right)+c\left(\begin{array}{cc}
0 & -1 \\
4 & -2
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Leads to the equations $a=-3 b=2 c$ and $b=4 c$, which together imply that $a=b=$ $c=0$.
Since, as we have verified above, the five given matrices are in $\operatorname{span}(S)$, we conclude that S is a basis for the given subspace of $\mathrm{M}_{2 \times 2}(\mathbb{R})$.
(2) Suppose $\alpha=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $\beta=\left\{y_{1}, y_{2}, y_{3}\right\}$ are two ordered bases for a vector space V over the field \mathbb{R} of real numbers. Given that

$$
x_{1}=2 y_{2}+y_{3}, \quad x_{2}=2 y_{1}+2 y_{3}, \quad x_{2}-x_{3}=y_{1}-y_{2},
$$

find the change of coordinate matrix Q that converts α-coordinates into β-coordinates as well as the change of coordinate matrix Q^{-1} that converts β-coordinates into α coordinates.

Solution - Since $x_{1}=2 y_{2}+y_{3}, x_{2}=2 y_{1}+2 y_{3}$, and

$$
x_{3}=x_{2}-y_{1}+y_{2}=y_{1}+y_{2}+y_{3},
$$

we see that

$$
\left[x_{1}\right]_{\beta}=(0,2,1), \quad\left[x_{2}\right]_{\beta}=(2,0,2), \quad\left[x_{3}\right]_{\beta}=(1,1,1)
$$

Therefore,

$$
Q=\left(\begin{array}{lll}
0 & 2 & 1 \\
2 & 0 & 1 \\
1 & 2 & 1
\end{array}\right)
$$

is the matrix that converts α-coordinates into β-coordinates.
Solving the given equations for y_{1}, y_{2}, y_{3} in terms of x_{1}, x_{2}, x_{3}, we obtain

$$
y_{1}=-x_{1}-\frac{1}{2} x_{2}+2 x_{3}, \quad y_{2}=-\frac{1}{2} x_{2}+x_{3}, \quad y_{3}=x_{1}+x_{2}-2 x_{3} .
$$

Therefore

$$
\left[y_{1}\right]_{\alpha}=(-1,-1 / 2,2), \quad\left[y_{2}\right]_{\alpha}=(0,-1 / 2,1), \quad\left[y_{3}\right]_{\alpha}=(1,1,-2)
$$

and hence

$$
Q^{-1}=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
-1 / 2 & -1 / 2 & 1 \\
2 & 1 & -2
\end{array}\right)
$$

is the matrix that converts β-coordinates into α-coordinates.
To be sure, we can check that $Q Q^{-1}=I=Q^{-1} Q$.
(3) Let $T: \mathrm{P}_{2}(\mathbb{R}) \rightarrow \mathrm{P}_{2}(\mathbb{R})$ be the linear transformation such that

$$
T(1)=2 x, \quad T(x+1)=0, \quad T\left(x^{2}+x+1\right)=x^{2}+x+1 .
$$

Find the matrix representation $[T]_{\gamma}$ with respect to the standard ordered basis $\gamma=$ $\left\{1, x, x^{2}\right\}$ for $\mathrm{P}_{2}(\mathbb{R})$.

Solution - From the given information and the fact that T is linear, we have $T(1)=$ $2 x$,

$$
T(x)=T(x+1)-T(1)=-2 x,
$$

and

$$
T\left(x^{2}\right)=T\left(x^{2}+x+1\right)-T(x+1)=x^{2}+x+1 .
$$

Therefore, after reading the γ-coordinates of each result,

$$
[T]_{\gamma}=[T]_{\gamma}^{\gamma}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
2 & -2 & 1 \\
0 & 0 & 1
\end{array}\right) .
$$

Problem C.

(1) Show that an $n \times n$ matrix A over the field F is invertible if and only if its columns form a basis for F^{n}.

Solution - There are several ways to go about this; the following are just one of hundreds of possible solutions you could do using just the material from Chapters 1 $\& 2$.

First, suppose that A is invertible. We will show that the columns $v_{1}, v_{2}, \ldots, v_{n}$ of A are linearly independent. Observe that, by definition of matrix multiplication,

$$
A x=x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n},
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is any vector in F^{n}. Therefore, we can interpret $A x$ as a linear combination of the columns of A with coefficients $x_{1}, x_{2}, \ldots, x_{n}$. If A is invertible with inverse A^{-1}, then $A x=0$ implies that $x=A^{-1} A x=A^{-1} 0=0$. Therefore, the only linear combination of the columns of A that yields 0 is the trivial one. Thus, if A is invertible then the columns of A are linearly independent. Since A has n columns and $\operatorname{dim}\left(F^{n}\right)=n$, it follows from Corollary 2(a) of Theorem 1.10 that $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ form a basis for F^{n}.
Next, suppose the columns of A form an ordered basis $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ for F^{n}. Note that $A=\left[I_{F^{n}}\right]_{\beta}^{\alpha}$, where $\alpha=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is the standard ordered basis for F^{n}. Thus A is the change-of-coordinate matrix from β to α. By Theorem 2.22(a), the matrix A must be invertible. In fact, $A^{-1}=\left[I_{F^{n}}\right]_{\alpha}^{\beta}$.
(2) Determine all possible $a, b \in \mathbb{R}$ for which the matrix

$$
\left(\begin{array}{lll}
a & 1 & 2 \\
0 & 1 & b \\
1 & 1 & 2
\end{array}\right)
$$

is not invertible.

Solution - If $b=2$ (and a is any real number) then the last column is twice the second and hence the matrix is not invertible by part 1 .
If $b \neq 2$, then the span of the last two columns is

$$
\mathbf{W}=\left\{(x, y, z) \in \mathbb{R}^{3}: x=z\right\}
$$

since

$$
\left(\begin{array}{l}
x \\
y \\
x
\end{array}\right)=\frac{2 y-b x}{2-b}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+\frac{x-y}{2-b}\left(\begin{array}{l}
2 \\
b \\
2
\end{array}\right) .
$$

The first column belongs to W exactly when $a=1$. In all other cases, by Theorem 1.7, the three columns of the matrix are linearly independent and therefore form a basis for \mathbb{R}^{3} by Corollary 2(b) of Theorem 1.10. So, by part 1 , when $b \neq 2$, the matrix is not invertible if and only if $a=1$.

To summarize the matrix is not invertible precisely when either $b=2$ or $a=1$. In other words, the set of pairs $(a, b) \in \mathbb{R}^{2}$ for which the given matrix is not invertible is the union of two lines, the line $a=1$ and the line $b=2$.

Problem D. Suppose $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$ and $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ are linear transformations that both have rank 3.
(1) Could T have a right inverse? A left inverse? Explain.

Solution - From the April 16 slides, we know that (i) T has a right inverse if and only if it is onto and (ii) T has a left inverse if and only if it is one-to-one.

It is definitely possible for T to be onto. In fact it must be onto, $\operatorname{since} \operatorname{rank}(T)=3=$ $\operatorname{dim}\left(\mathbb{R}^{3}\right)$. Therefore, by (i), T must have a right inverse.
It is not possible for T to be one-to-one. By the Dimension Theorem, $\operatorname{rank}(T)+$ $\operatorname{nullity}(T)=\operatorname{dim}\left(\mathbb{R}^{5}\right)=5$. Since $\operatorname{rank}(T)=3$, we must have nullity $(T)=2$. By Theorem 2.4, T is one-to-one exactly when $\mathrm{N}(T)=\{0\}$. Since $\mathrm{N}(T) \neq\{0\}, T$ is not one-to-one and hence T does not have a left inverse.
(2) What is the smallest possible rank for $T S$? Explain and find a pair of such linear transformations where this minimal rank is achieved.

Solution - Since S has rank $3, \mathrm{R}(S)$ is a 3-dimensional subspace of \mathbb{R}^{5}. Also, $\mathrm{N}(T)$ is a 2-dimensional subspace of \mathbb{R}^{5} by the Dimension Theorem, since nullity $(T)=\operatorname{dim}\left(\mathbb{R}^{5}\right)$ $\operatorname{rank}(T)=2$ We cannot have $\mathrm{R}(S) \subseteq \mathrm{N}(T)$ since the former has larger dimension than the latter. Therefore $T S$ cannot be the zero transformation, which means that $\operatorname{rank}(T S) \geq 1$ because the zero transformation is the only linear transformation with rank 0 .

It turns out that $\operatorname{rank}(T S)=1$ is achievable. For example, if

$$
S(x, y, z)=(x, 0, y, 0, z), \quad T\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=\left(a_{2}, a_{3}, a_{4}\right),
$$

both of which have rank 3 , then

$$
T S(x, y, z)=(0, y, 0)
$$

which has rank 1 since $\mathrm{R}(T S)=\operatorname{span}\{(0,1,0)\}$.
(3) What is the largest possible rank for $S T$? Explain and find a pair of such linear transformations where this maximal rank is achieved.

Solution - Since $\mathrm{R}(S T) \subseteq \mathrm{R}(S)$ (because $S(T(x)) \in \mathrm{R}(S)$ for every $x \in \mathbb{R}^{5}$) we must have $\operatorname{rank}(S T) \leq \operatorname{rank}(S)=3$. It is possible to have $\operatorname{rank}(S T)=3$. For example, if

$$
S(x, y, z)=(x, y, z, 0,0), \quad T\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=\left(a_{1}, a_{2}, a_{3}\right),
$$

both of which have rank 3 , then

$$
S T\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=\left(a_{1}, a_{2}, a_{3}, 0,0\right)
$$

has rank 3 too since $\mathrm{R}(S T)=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$.
In fact, since T is onto, $\mathrm{R}(S T)=\mathrm{R}(S)$ and therefore $S T$ has rank exactly 3 .
(4) Could $S T$ be invertible? How about $T S$? Explain.

Solution - By part 3, we know that $\operatorname{rank}(S T) \leq 3$. Since an invertible linear transformation $\mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ must have rank 5 by the last theorem of the April 16 slides, we see that $S T$ couldn't be invertible.

However, $T S$ can be invertible. This will happen if S is a right inverse of T, as we determined possible in part 1. In fact, as we observed at the end of part $3, T S$ is always invertible since it always has rank 3 .

Problem E. Let V be an n-dimensional vector space over the field F and let I denote the identity transformation on V .

A linear transformation $P: \mathrm{V} \rightarrow \mathrm{V}$ is said to have property Π if $P^{2}=P$, i.e., $P(P(x))=P(x)$ for every $x \in \mathrm{~V}$.
(1) Show that if $\alpha=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is any ordered basis for V and if $0 \leq d \leq n$, then the linear transformation $P_{d}^{\alpha}: \mathrm{V} \rightarrow \mathrm{V}$ such that

$$
P_{d}^{\alpha}\left(v_{i}\right)= \begin{cases}v_{i} & \text { if } 1 \leq i \leq d \\ 0 & \text { if } d+1 \leq i \leq n\end{cases}
$$

has property Π. (Note that $P_{0}^{\alpha}=T_{0}$ and $P_{n}^{\alpha}=I$.)
Solution - Applying the definition of P_{d}^{α} twice, we see that

$$
P_{d}^{\alpha}\left(P_{d}^{\alpha}\left(v_{i}\right)\right)=\left\{\begin{array}{ll}
P_{d}^{\alpha}\left(v_{i}\right) & \text { if } 1 \leq i \leq d, \\
P_{d}^{\alpha}(0) & \text { if } d+1 \leq i \leq n,
\end{array}= \begin{cases}v_{i} & \text { if } 1 \leq i \leq d, \\
0 & \text { if } d+1 \leq i \leq n,\end{cases}\right.
$$

Since α is a basis for V , it follows from the uniqueness part of Theorem 2.6 that $\left(P_{d}^{\alpha}\right)^{2}=P_{d}^{\alpha}$.
(2) Show that if $P: \vee \rightarrow \mathrm{V}$ is a linear transformation with property Π, then $I-P: \mathrm{V} \rightarrow \mathrm{V}$ is also a linear transformation with property Π.

Solution - Using the properties listed in Theorem 2.10, we see that

$$
(I-P)^{2}=(I-P)(I-P)=I(I-P)-P(I-P)=(I-P)-\left(P-P^{2}\right)=I-P,
$$

since $P^{2}=P$.
(3) Show that if $P: \vee \rightarrow \mathrm{V}$ is a linear transformation with property Π, then $\mathrm{R}(P)=$ $\mathrm{N}(I-P)$.

Solution - Since $(I-P) P=P-P^{2}=P-P=T_{0}$ by the properties listed in Theorem 2.10, it follows that $\mathrm{R}(P) \subseteq \mathrm{N}(I-P)$. Indeed, if $y \in \mathrm{R}(P)$ then $y=P(x)$ for some $x \in \mathrm{~V}$ and then $(I-P)(y)=(I-P)(P(x))=0$.
To see that $\mathrm{N}(I-P) \subseteq \mathrm{R}(P)$, suppose $x \in \mathrm{~N}(I-P)$. Then $0=(I-P)(x)=$ $I(x)-P(x)=x-P(x)$. But then $P(x)=x$, which means that $x=P(x) \in \mathrm{R}(P)$. Since $\mathrm{R}(P) \subseteq \mathrm{N}(I-P)$ and $\mathrm{N}(I-P) \subseteq \mathrm{R}(P)$, we conclude that $\mathrm{R}(P)=\mathrm{N}(I-P)$.
(4) Show that if $P: \vee \rightarrow \mathrm{V}$ is a linear transformation with property Π, then $\mathrm{N}(P) \cap \mathrm{R}(P)=$ $\{0\}$.

Solution - By part 3, this is equivalent to showing that $\mathrm{N}(P) \cap \mathrm{N}(I-P)=\{0\}$. So suppose $x \in \mathrm{~N}(P) \cap \mathrm{N}(I-P)$. Then $0=P(x)$ and $0=(I-P)(x)=I(x)-P(x)=$ $x-P(x)$. It follows from this that $x=P(x)=0$. Since x was an arbitrary element of $\mathrm{N}(P) \cap \mathrm{N}(I-P)$, we conclude that $\mathrm{N}(P) \cap \mathrm{N}(I-P) \subseteq\{0\}$.

Because every subspace of V contains 0 , we see that $\mathrm{N}(P) \cap \mathrm{R}(P)=\mathrm{N}(P) \cap \mathrm{N}(I-P)=$ $\{0\}$.
(5) Show that if $P: \bigvee \rightarrow \mathrm{V}$ is a linear transformation with property Π, then there are an ordered basis $\alpha=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ for V and $0 \leq d \leq n$ such that $P=P_{d}^{\alpha}$ (as defined in part 1). That is, every linear transformation with property Π is of the form P_{d}^{α} described in part 1 for some choice of ordered basis α for V and some choice of $0 \leq d \leq n$.

Solution - Given a linear transformation $P: V \rightarrow \mathrm{~V}$ with property Π, we need to find a basis $\alpha=\left\{v_{1}, \ldots, v_{n}\right\}$ and an integer $0 \leq d \leq n$ such that $P=P_{d}^{\alpha}$. The number d will be the rank of P. Note that $n-d$ will then be the nullity of P by the Dimension Theorem.

To choose the basis, first pick a basis $\left\{v_{1}, \ldots, v_{d}\right\}$ for $\mathrm{R}(P)$ and then pick a basis $\left\{v_{d+1}, \ldots, v_{n}\right\}$ for $\mathrm{N}(P)$ (note that there are appropriately $n-d$ vectors in the latter list). By part $3, \mathrm{R}(P) \cap \mathrm{N}(P)=\{0\}$ and thus, by Special Assignment 2, $\alpha=\left\{v_{1}, \ldots, v_{d}, v_{d+1}, \ldots, v_{n}\right\}$ forms a basis for the direct sum $\mathrm{R}(P)+\mathrm{N}(P)$. Since V has dimension n and α consists of n linearly independent vectors, it follows from Corollary $2(\mathrm{~b})$ of Theorem 1.10 that α is actually a basis for V (and therefore that $\mathrm{V}=\mathrm{R}(P)+\mathrm{N}(P))$.

I claim that $P=P_{d}^{\alpha}$. By Theorem 2.6, it suffices to check that $P\left(v_{i}\right)=P_{d}^{\alpha}\left(v_{i}\right)$ for $i=1, \ldots, n$. We consider two cases:

- If $1 \leq i \leq d$, then $v_{i} \in \mathrm{R}(P)=\mathrm{N}(I-P)$ by part 3 . Therefore, $v_{i}-P\left(v_{i}\right)=0$ or $P\left(v_{i}\right)=v_{i}$. By definition of $P_{d}^{\alpha}, P_{d}^{\alpha}\left(v_{i}\right)=v_{i}=P\left(v_{i}\right)$, as required.
- If $d+1 \leq i \leq n$, then $v_{i} \in \mathrm{~N}(P)$, which means that $P\left(v_{i}\right)=0$. By definition of $P_{d}^{\alpha}, P_{d}^{\alpha}\left(v_{i}\right)=0=P\left(v_{i}\right)$, as required.

