Math 24 Spring 2012 Sample Homework Solutions Week 9

Section 6.3

- (2.) Find a vector y such that $g(x) = \langle x, y \rangle$ for all $x \in V$.
- (b) $V = \mathbb{C}^2$, and $g(z_1, z_2) = z_1 2z_2$.
- y = (1, -2).

(3.) Evaluate T^* at the given vector in V.

(b)
$$V = \mathbb{C}^2$$
, $T(z_1, z_2) = (2z_1 + iz_2, (1 - i)z_1)$, $x = (3 - i, 1 + 2i)$.
 $T^*(z_1, z_2) = (2z_1 + (i + 1)z_2, (-i)z_1)$; $T^*(3 - i, 1 + 2i) = (5 + i, -1 - 3i)$

(12.) Let V be an inner product space, and T a linear operator on T. Prove:

(a) $R(T^*)^{\perp} = N(T)$.

Suppose $w \in R(T^*)$ and $v \in V$ are arbitrary. By assumption, we can write $w = T^*(u)$ for some $u \in V$. Then, by the definition of T^* , we have

$$\langle v, w \rangle = \langle v, T^*(u) \rangle = \langle T(v), u \rangle.$$

If $v \in N(T)$, then T(v) = 0, and so, by the above equation, $\langle v, w \rangle = 0$ for all $w \in R(T^*)$. That is, $v \in R(T^*)^{\perp}$. This shows $N(T) \subseteq R(T^*)^{\perp}$.

Conversely, suppose that $v \in R(T^*)^{\perp}$. Then $\langle v, w \rangle = 0$ for all $w \in R(T^*)$, and so, by the above equation, $\langle T(v), u \rangle = 0$ for all $u \in V$. This can only happen if T(v) = 0, that is, $v \in N(T)$. This shows $R(T^*)^{\perp} \subseteq N(T)$.

(b) If V is finite-dimensional, then $R(T^*) = N(T)^{\perp}$.

By part (a), all vectors in $R(T^*)$ are orthogonal to all vectors in N(T), and so $R(T^*) \subseteq N(T)^{\perp}$.

By Theorem 6.7(c), and part (a), $dim(R(T^*)) = V - dim(R(T^*)^{\perp}) = V - dim(N(T))$; by Theorem 6.7(c), $dim(N(T)^{\perp} = V - dim(N(T))$.

Now we have $R(T^*) \subseteq N(T)^{\perp}$, and $R(T^*)$ and $N(T)^{\perp}$ have the same finite dimension. Therefore, they must be equal.

(20.) Use the least squares approximation to find the best fit for this set of data with both a linear function and a quadratic function; compute the error E in both cases.

(a)
$$\{(-3,9), (-2,6), (0,2), (1,1)\}$$
.

For a linear function, we want the function y = ct + d that best fits this data; that is, we want the closest possible approximation $x = x_0$ to a solution to the equation Ax = y:

$$\begin{pmatrix} -3 & 1\\ -2 & 1\\ 0 & 1\\ 1 & 1 \end{pmatrix} \begin{pmatrix} c\\ d \end{pmatrix} = \begin{pmatrix} 9\\ 6\\ 2\\ 1 \end{pmatrix}.$$

The error will be $E = ||y - Ax_0||^2$.

By our general method, our solution is $x_0 = (A^*A)^{-1}A^*y$. Since we are working over \mathbb{R} , $A^* = A^t$, and we can compute $A^*A = \begin{pmatrix} 14 & 4 \\ 4 & 4 \end{pmatrix}$, $(A^*A)^{-1} =$

 $\frac{1}{20} \begin{pmatrix} 2 & 2\\ 2 & 7 \end{pmatrix},$

$$\begin{pmatrix} c \\ d \end{pmatrix} = \frac{1}{20} \begin{pmatrix} 2 & 2 \\ 2 & 7 \end{pmatrix} \begin{pmatrix} -3 & -2 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 9 \\ 6 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -2 \\ 2.5 \end{pmatrix},$$

our best linear approximation to this data is y = -2t + 2.5, and the error is $\left\| \begin{pmatrix} 9\\6\\2\\1 \end{pmatrix} - \begin{pmatrix} -3 & 1\\-2 & 1\\0 & 1\\1 & 1 \end{pmatrix} \begin{pmatrix} -2\\2.5 \end{pmatrix} \right\|^2 = 1.$

For a quadratic function, our equation Ax = y is

$$\begin{pmatrix} 9 & -3 & 1 \\ 4 & -2 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 9 \\ 6 \\ 2 \\ 1 \end{pmatrix}.$$

The best quadratic approximation is $y = \frac{1}{3}t^2 - \frac{4}{3}t + 2$ and the error is 0.

Section 6.4

(2.) For each linear operator T, determine whether T is normal, selfadjoint, or neither. If possible, find an orthonormal basis of eigenvectors, and give the corresponding eigenvalues.

(b) $V = \mathbb{R}^2$ and T(a, b) = (2a - 2b, -2a + 5b).

The matrix of T in the standard basis is $\begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$, which is self-adjoint, so T is self-adjoint. We compute the eigenvalues, 1 and 6, and corresponding eigenvectors, (2, 1) and (1, -2) respectively, and check that they are in fact orthogonal. An orthonormal basis of eigenvectors is $\left\{\frac{\sqrt{5}}{5}(2, 1), \frac{\sqrt{5}}{5}(1, -2)\right\}$.

(d) $V = P_2(\mathbb{R})$ and T(f) = f'; the inner product is $\langle f, g \rangle = \int_0^1 f(t)g(t) dt$.

First, we use Gram-Schmidt to find an orthonormal basis relative to this inner product, and get $\beta = \{1, 2\sqrt{3}x - \sqrt{3}, 6\sqrt{5}x^2 - 6\sqrt{5}x + \sqrt{5}\}$. The matrix of *T* in this basis is $\begin{pmatrix} 0 & 2\sqrt{3} & 0 \\ 0 & 0 & 2\sqrt{15} \\ 0 & 0 & 0 \end{pmatrix}$, which we can check is neither self-adjoint nor normal.

(f)
$$V = M_{2 \times 2}(\mathbb{R})$$
 and $T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} c & d \\ a & b \end{pmatrix}$.

The matrix of T in the standard basis is $\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$, which is self-adjoint. The eigenvalues are 1, with eigenvectors $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, and

 $-1, \text{ with eigenvectors } \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}. \text{ An orthonormal basis of eigenvectors is } \left\{ \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \frac{\sqrt{2}}{2} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \frac{\sqrt{2}}{2} \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} \right\}$

(9.) Let T be a normal operator on a finite-dimensional inner product space V. Prove that $N(T) = N(T^*)$ and $R(T) = R(T^*)$.

By Theorem 6.15(a), $||T(x)|| = ||T^*(x)||$ for all $x \in V$. Therefore, we have

$$x \in N(T) \iff T(x) = 0 \iff ||T(x)|| = 0 \iff ||T^*(x)|| = 0 \iff T^*(x) = 0 \iff x \in N(T^*)$$

Therefore $N(T) = N(T^*)$.

By 6.3 exercise (12), $R(T^*) = N(T)^{\perp}$. Since if T is normal, T^* is also, 6.3 exercise (12) applies to T^* , and we have $R(T) = R(T^{**}) = N(T^*)^{\perp}$. Since $N(T) = N(T^*)$, we have $R(T) = N(T^*)^{\perp} = N(T)^{\perp} = R(T^*)$.

Section 6.5

(2.) For each matrix A, find a unitary or orthogonal matrix P and a diagonal matrix D such that $P^*AP = D$.

(b) $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. The eigenvalues of A are i, with eigenvector (i, 1), and -i, with eigenvector (1, i). An orthonormal basis of eigenvectors is $\left\{ \begin{pmatrix} \sqrt{2} \\ 2 \end{pmatrix}, \begin{pmatrix} \sqrt{2} \\ 2 \end{pmatrix},$

(5.) Are these matrices unitarily equivalent?

(b)
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}$.

No. Unitarily equivalent matrices must be similar, and similar matrices have the same determinant; these matrices do not have the same determinant.

Section 6.6

(2.) Compute the matrix of T in the standard basis β , where T is the orthogonal projection of V on W, if $V = \mathbb{R}^2$ and $W = span(\{(1,2)\})$, and if $V = \mathbb{R}^3$ and $W = span(\{(1,0,1)\})$

To find $T(e_i)$ where $W = span(\{w\})$, find the orthogonal projection of e_i onto the vector w, which is $\frac{\langle e_i, w \rangle}{\langle w, w \rangle} w$. In the first case, $[T]_{\beta} = \begin{pmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{4}{5} \end{pmatrix}$. In the second case, $[T]_{\beta} = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$.

(3.) For the corresponding matrix A in 6.5 exercise (2), verify that L_A has a spectral decomposition, for each eigenvalue explicitly define the projection onto the corresponding eigenspace, and use the spectral theorem to verify the result.

(b) We can check to see that $AA^* = A^*A$, so A is normal, and has a spectral decomposition (over \mathbb{C}). An orthonormal basis of eigenvectors is $\left\{\left(\frac{\sqrt{2}}{2}i, \frac{\sqrt{2}}{2}\right), \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}i\right)\right\}$. The projection of (1,0) onto the eigenvector $\left(\frac{\sqrt{2}}{2}i, \frac{\sqrt{2}}{2}\right)$ is $\left\langle(1,0), \left(\frac{\sqrt{2}}{2}i, \frac{\sqrt{2}}{2}\right)\right\rangle \left(\frac{\sqrt{2}}{2}i, \frac{\sqrt{2}}{2}\right) = \left(\frac{1}{2}, -\frac{1}{2}i\right)$ and the projection of (0,1) onto the eigenvector $\left(\frac{\sqrt{2}}{2}i, \frac{\sqrt{2}}{2}\right)$ is $\left\langle(0,1), \left(\frac{\sqrt{2}}{2}i, \frac{\sqrt{2}}{2}\right)\right\rangle \left(\frac{\sqrt{2}}{2}i, \frac{\sqrt{2}}{2}\right) = \left(\frac{1}{2}i, \frac{1}{2}\right)$, so the matrix of the orthogonal projection onto E_i in the standard basis is $\left(\begin{array}{c}\frac{1}{2}&\frac{1}{2}i\\-\frac{1}{2}i&\frac{1}{2}\end{array}\right)$, and the projection is $T_i(a,b) = \left(\frac{1}{2}a + \frac{1}{2}ib, -\frac{1}{2}ia + \frac{1}{2}b\right)$. Similarly, the projection onto E_{-i} is $T_{-i}(a,b) = T_i(a,b) = \left(\frac{1}{2}a - \frac{1}{2}ib, \frac{1}{2}ia + \frac{1}{2}b\right)$.

To verify this using the spectral theorem, we need to check that $L_A = iT_i + (-i)T_{-i}$, or that $TL_A(a, b) = i(\frac{1}{2}a + \frac{1}{2}ib, -\frac{1}{2}ia + \frac{1}{2}b) + (-i)(\frac{1}{2}a - \frac{1}{2}ib, \frac{1}{2}ia + \frac{1}{2}b)$. This is true.