Math 24
 Spring 2012
 Sample Homework Solutions
 Week 9

Section 6.3

(2.) Find a vector y such that $g(x)=\langle x, y\rangle$ for all $x \in V$.
(b) $V=\mathbb{C}^{2}$, and $g\left(z_{1}, z_{2}\right)=z_{1}-2 z_{2}$.
$y=(1,-2)$.
(3.) Evaluate T^{*} at the given vector in V.
(b) $V=\mathbb{C}^{2}, T\left(z_{1}, z_{2}\right)=\left(2 z_{1}+i z_{2},(1-i) z_{1}\right), x=(3-i, 1+2 i)$.
$T^{*}\left(z_{1}, z_{2}\right)=\left(2 z_{1}+(i+1) z_{2},(-i) z_{1}\right) ; T^{*}(3-i, 1+2 i)=(5+i,-1-3 i)$.
(12.) Let V be an inner product space, and T a linear operator on T. Prove:
(a) $R\left(T^{*}\right)^{\perp}=N(T)$.

Suppose $w \in R\left(T^{*}\right)$ and $v \in V$ are arbitrary. By assumption, we can write $w=T^{*}(u)$ for some $u \in V$. Then, by the definition of T^{*}, we have

$$
\langle v, w\rangle=\left\langle v, T^{*}(u)\right\rangle=\langle T(v), u\rangle
$$

If $v \in N(T)$, then $T(v)=0$, and so, by the above equation, $\langle v, w\rangle=0$ for all $w \in R\left(T^{*}\right)$. That is, $v \in R\left(T^{*}\right)^{\perp}$. This shows $N(T) \subseteq R\left(T^{*}\right)^{\perp}$.

Conversely, suppose that $v \in R\left(T^{*}\right)^{\perp}$. Then $\langle v, w\rangle=0$ for all $w \in R\left(T^{*}\right)$, and so, by the above equation, $\langle T(v), u\rangle=0$ for all $u \in V$. This can only happen if $T(v)=0$, that is, $v \in N(T)$. This shows $R\left(T^{*}\right)^{\perp} \subseteq N(T)$.
(b) If V is finite-dimensional, then $R\left(T^{*}\right)=N(T)^{\perp}$.

By part (a), all vectors in $R\left(T^{*}\right)$ are orthogonal to all vectors in $N(T)$, and so $R\left(T^{*}\right) \subseteq N(T)^{\perp}$.

By Theorem 6.7(c), and part (a), $\operatorname{dim}\left(R\left(T^{*}\right)\right)=V-\operatorname{dim}\left(R\left(T^{*}\right)^{\perp}\right)=$ $V-\operatorname{dim}(N(T))$; by Theorem 6.7(c), $\operatorname{dim}\left(N(T)^{\perp}=V-\operatorname{dim}(N(T))\right.$.

Now we have $R\left(T^{*}\right) \subseteq N(T)^{\perp}$, and $R\left(T^{*}\right)$ and $N(T)^{\perp}$ have the same finite dimension. Therefore, they must be equal.
(20.) Use the least squares approximation to find the best fit for this set of data with both a linear function and a quadratic function; compute the error E in both cases.
(a) $\{(-3,9),(-2,6),(0,2),(1,1)\}$.

For a linear function, we want the function $y=c t+d$ that best fits this data; that is, we want the closest possible approximation $x=x_{0}$ to a solution to the equation $A x=y$:

$$
\left(\begin{array}{cc}
-3 & 1 \\
-2 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right)\binom{c}{d}=\left(\begin{array}{l}
9 \\
6 \\
2 \\
1
\end{array}\right)
$$

The error will be $E=\left\|y-A x_{0}\right\|^{2}$.
By our general method, our solution is $x_{0}=\left(A^{*} A\right)^{-1} A^{*} y$. Since we are working over $\mathbb{R}, A^{*}=A^{t}$, and we can compute $A^{*} A=\left(\begin{array}{cc}14 & 4 \\ 4 & 4\end{array}\right),\left(A^{*} A\right)^{-1}=$ $\frac{1}{20}\left(\begin{array}{ll}2 & 2 \\ 2 & 7\end{array}\right)$,

$$
\binom{c}{d}=\frac{1}{20}\left(\begin{array}{ll}
2 & 2 \\
2 & 7
\end{array}\right)\left(\begin{array}{cccc}
-3 & -2 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
9 \\
6 \\
2 \\
1
\end{array}\right)=\binom{-2}{2.5}
$$

our best linear approximation to this data is $y=-2 t+2.5$, and the error is $\left\|\left(\begin{array}{l}9 \\ 6 \\ 2 \\ 1\end{array}\right)-\left(\begin{array}{cc}-3 & 1 \\ -2 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)\binom{-2}{2.5}\right\|^{2}=1$.

For a quadratic function, our equation $A x=y$ is

$$
\left(\begin{array}{ccc}
9 & -3 & 1 \\
4 & -2 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
9 \\
6 \\
2 \\
1
\end{array}\right)
$$

The best quadratic approximation is $y=\frac{1}{3} t^{2}-\frac{4}{3} t+2$ and the error is 0 .
Section 6.4
(2.) For each linear operator T, determine whether T is normal, selfadjoint, or neither. If possible, find an orthonormal basis of eigenvectors, and give the corresponding eigenvalues.
(b) $V=\mathbb{R}^{2}$ and $T(a, b)=(2 a-2 b,-2 a+5 b)$.

The matrix of T in the standard basis is $\left(\begin{array}{cc}2 & -2 \\ -2 & 5\end{array}\right)$, which is self-adjoint, so T is self-adjoint. We compute the eigenvalues, 1 and 6 , and corresponding eigenvectors, $(2,1)$ and $(1,-2)$ respectively, and check that they are in fact orthogonal. An orthonormal basis of eigenvectors is $\left\{\frac{\sqrt{5}}{5}(2,1), \frac{\sqrt{5}}{5}(1,-2)\right\}$.
(d) $V=P_{2}(\mathbb{R})$ and $T(f)=f^{\prime}$; the inner product is $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$.

First, we use Gram-Schmidt to find an orthonormal basis relative to this inner product, and get $\beta=\left\{1,2 \sqrt{3} x-\sqrt{3}, 6 \sqrt{5} x^{2}-6 \sqrt{5} x+\sqrt{5}\right\}$. The matrix of T in this basis is $\left(\begin{array}{ccc}0 & 2 \sqrt{3} & 0 \\ 0 & 0 & 2 \sqrt{15} \\ 0 & 0 & 0\end{array}\right)$, which we can check is neither self-adjoint nor normal.
(f) $V=M_{2 \times 2}(\mathbb{R})$ and $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}c & d \\ a & b\end{array}\right)$.

The matrix of T in the standard basis is $\left(\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$, which is selfadjoint. The eigenvalues are 1, with eigenvectors $\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right)$, and
-1 , with eigenvectors $\left(\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right)$ and $\left(\begin{array}{cc}0 & 1 \\ 0 & -1\end{array}\right)$. An orthonormal basis of eigenvectors is $\left\{\frac{\sqrt{2}}{2}\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right), \frac{\sqrt{2}}{2}\left(\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right), \frac{\sqrt{2}}{2}\left(\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right), \frac{\sqrt{2}}{2}\left(\begin{array}{cc}0 & 1 \\ 0 & -1\end{array}\right)\right\}$
(9.) Let T be a normal operator on a finite-dimensional inner product space V. Prove that $N(T)=N\left(T^{*}\right)$ and $R(T)=R\left(T^{*}\right)$.

By Theorem 6.15(a), $\|T(x)\|=\left\|T^{*}(x)\right\|$ for all $x \in V$. Therefore, we have
$x \in N(T) \Longleftrightarrow T(x)=0 \Longleftrightarrow\|T(x)\|=0 \Longleftrightarrow\left\|T^{*}(x)\right\|=0 \Longleftrightarrow T^{*}(x)=0 \Longleftrightarrow x \in N\left(T^{*}\right)$.
Therefore $N(T)=N\left(T^{*}\right)$.
By 6.3 exercise (12), $R\left(T^{*}\right)=N(T)^{\perp}$. Since if T is normal, T^{*} is also, 6.3 exercise (12) applies to T^{*}, and we have $R(T)=R\left(T^{* *}\right)=N\left(T^{*}\right)^{\perp}$. Since $N(T)=N\left(T^{*}\right)$, we have $R(T)=N\left(T^{*}\right)^{\perp}=N(T)^{\perp}=R\left(T^{*}\right)$.

Section 6.5
(2.) For each matrix A, find a unitary or orthogonal matrix P and a diagonal matrix D such that $P^{*} A P=D$.
(b) $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. The eigenvalues of A are i, with eigenvector $(i, 1)$, and $-i$, with eigenvector $(1, i)$. An orthonormal basis of eigenvectors is $\left\{\left(\frac{\sqrt{2}}{2} i, \frac{\sqrt{2}}{2}\right),\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} i\right)\right\} . D=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$, and $P=\left(\begin{array}{cc}\frac{\sqrt{2}}{2} i & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} i\end{array}\right)$.
(5.) Are these matrices unitarily equivalent?
(b) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $\left(\begin{array}{cc}0 & \frac{1}{2} \\ \frac{1}{2} & 0\end{array}\right)$.

No. Unitarily equivalent matrices must be similar, and similar matrices have the same determinant; these matrices do not have the same determinant.

Section 6.6
(2.) Compute the matrix of T in the standard basis β, where T is the orthogonal projection of V on W, if $V=\mathbb{R}^{2}$ and $W=\operatorname{span}(\{(1,2)\})$, and if $V=\mathbb{R}^{3}$ and $W=\operatorname{span}(\{(1,0,1)\})$

To find $T\left(e_{i}\right)$ where $W=\operatorname{span}(\{w\})$, find the orthogonal projection of e_{i} onto the vector w, which is $\frac{\left\langle e_{i}, w\right\rangle}{\langle w, w\rangle} w$.

In the first case, $[T]_{\beta}=\left(\begin{array}{cc}\frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{4}{5}\end{array}\right)$.
In the second case, $[T]_{\beta}=\left(\begin{array}{ccc}\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2}\end{array}\right)$.
(3.) For the corresponding matrix A in 6.5 exercise (2), verify that L_{A} has a spectral decomposition, for each eigenvalue explicitly define the projection onto the corresponding eigenspace, and use the spectral theorem to verify the result.
(b) We can check to see that $A A^{*}=A^{*} A$, so A is normal, and has a spectral decomposition (over \mathbb{C}). An orthonormal basis of eigenvectors is $\left\{\left(\frac{\sqrt{2}}{2} i, \frac{\sqrt{2}}{2}\right),\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} i\right)\right\}$. The projection of $(1,0)$ onto the eigenvector $\left(\frac{\sqrt{2}}{2} i, \frac{\sqrt{2}}{2}\right)$ is $\left\langle(1,0),\left(\frac{\sqrt{2}}{2} i, \frac{\sqrt{2}}{2}\right)\right\rangle\left(\frac{\sqrt{2}}{2} i, \frac{\sqrt{2}}{2}\right)=\left(\frac{1}{2},-\frac{1}{2} i\right)$ and the projection of $(0,1)$ onto the eigenvector $\left(\frac{\sqrt{2}}{2} i, \frac{\sqrt{2}}{2}\right)$ is $\left\langle(0,1),\left(\frac{\sqrt{2}}{2} i, \frac{\sqrt{2}}{2}\right)\right\rangle\left(\frac{\sqrt{2}}{2} i, \frac{\sqrt{2}}{2}\right)=\left(\frac{1}{2} i, \frac{1}{2}\right)$, so the matrix of the orthogonal projection onto E_{i} in the standard basis is $\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} i \\ -\frac{1}{2} i & \frac{1}{2}\end{array}\right)$, and the projection is $T_{i}(a, b)=\left(\frac{1}{2} a+\frac{1}{2} i b,-\frac{1}{2} i a+\frac{1}{2} b\right)$.

Similarly, the projection onto E_{-i} is $T_{-i}(a, b)=T_{i}(a, b)=\left(\frac{1}{2} a-\frac{1}{2} i b, \frac{1}{2} i a+\right.$ $\frac{1}{2} b$).

To verify this using the spectral theorem, we need to check that $L_{A}=i T_{i}+$ $(-i) T_{-i}$, or that $T L_{A}(a, b)=i\left(\frac{1}{2} a+\frac{1}{2} i b,-\frac{1}{2} i a+\frac{1}{2} b\right)+(-i)\left(\frac{1}{2} a-\frac{1}{2} i b, \frac{1}{2} i a+\frac{1}{2} b\right)$. This is true.

