
Math 24
Spring 2012

Sample Homework Solutions
Week 8

Section 5.2

(2.) Test A ∈ M2×2(R) for diagonalizability, and if possible find an
invertible matrix Q and a diagonal matrix D such that Q−1AQ = D.

(c) A =

(
1 4
3 2

)
. The characteristic polynomial is (λ− 1)(λ− 2)− 12−

(λ− 5)(λ+ 2), and the roots are 5 and 2, each with multiplicity 1. Because
A has two distinct eigenvalues, A is diagonalizable. An eigenvector for λ = 5
is (1, 1), and an eigenvector for λ = −2 is (1,−1).

D =

(
5 0
0 −2

)
Q =

(
1 1
1 −1

)

(d) A =

7 −4 0
8 −5 0
6 −6 3

. The characteristic polynomial is (3 − λ)((7 −

λ)(−5−λ)+32) = (3−λ)(λ−3)(λ+1), and the roots are 3, with multiplicity
2, and −1, with multiplicity 1. Because A− 3I has rank 1 (and thus nullity
2), A is diagonalizable. Two eigenvectors for λ = 3 are (1, 1, 0) and (0, 0, 1),
and an eigenvector for λ = −1 is (2, 4, 3).

D =

3 0 0
0 3 0
0 0 −1

 Q =

1 0 2
1 0 4
0 1 3



(e) A =

0 0 1
1 0 −1
0 1 1

. The characteristic polynomial is −λ((1−λ)(−λ)+

1) + 1 = (λ2 + 1)(−λ + 1), which does not split over R. Therefore A is not
diagonalizable.

(3.) Test the operator T on V for diagonalizability, and if T is diagonal-
izable, find a basis β for V such that [T ]β is a diagonal matrix.
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(c) V = R3, and T (a1, a2, a3) = (a2,−a1, 2a3). The matrix of T in the

standard basis is

 0 1 0
−1 0 0
0 0 2

. The characteristic polynomial is (2−λ)(λ2 +

1), which does not split over R. Therefore T is not diagonalizable.

(d) V = P2(R) and T (f(x)) = f(0)+f(1)(x+x2); that is, T (a+bx+cx2) =
a + (a + b + c)x + (a + b + c)x2. The matrix of T in the standard basis

is

1 0 0
1 1 1
1 1 1

. The characteristic polynomial is (1 − λ)((1 − λ)2 − 1) =

(1− λ)(λ)(λ− 2), and the roots are 0, 1, and 2. Because there are 3 distinct
eigenvalues, T is diagonalizable. A basis of eigenvectors (corresponding to
eigenvalues 0, 1, and 2 respectively) is {x− x2, 1− x− x2, x+ x2}.

(e) V = C2, and T (z, w) = (z + iw, iz + w). The matrix of T in the

standard basis is

(
1 i
i 1

)
. The characteristic polynomial is (1− λ)2 + 1, and

the roots are 1 + i and 1 − i. Because there are 2 distinct eigenvalues, T is
diagonalizable. A basis of eigenvectors (corresponding to eigenvalues 1 + i
and 1− i respectively) is {(1, 1), (1,−1)}.

(7.) A =

(
1 4
2 3

)
. Find an expression for An, where n is an arbitrary

positive integer.

Diagonalize A, so A = QDQ−1 for a diagonal matrix D. Then An =

(QDQ−1)n = QDnQ−1. Using the usual methods, we get D =

(
5 0
0 −1

)
Q =

(
1 −2
1 1

)
Q−1 = 1

3

(
1 2
−1 1

)
.

An =
1

3

(
1 −2
1 1

)(
5n 0
0 (−1)n

)(
1 2
−1 1

)
.

(11.) Let A be an n×n matrix that is similar to an upper triangular ma-
trix and has distinct eigenvalues λ1, . . . , λk with corresponding multiplicities
m1, . . . ,mk. Prove:
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(b) det(A) = (λ1)
m1(λ2)

m2 · · · (λk)mk .

The characteristic polynomial of A is (λ−λ1)
m1(λ−λ2)

m2 · · · (λ−λk)mk .
Let B be the upper triangular matrix similar to A, with diagonal entries

b1, b2, . . . bn. Because the determinant of an upper triangular matrix is the
product of its diagonal entries, det(B) = b1b2 · · · bn, and the characteristic
polynomial of B is (λ− b1)(λ− b2) · · · (λ− bn)

Because A and B are similar, they have the same characteristic polyno-
mial, so (λ − λ1)

m1(λ − λ2)
m2 · · · (λ − λk)mk = (λ − b1)(λ − b2) · · · (λ − bn).

Therefore, b1b2 · · · bn = (λ1)
m1(λ2)

m2 · · · (λk)mk .
BecauseA andB are similar, they have the same determinant, so det(A) =

det(B) = b1b2 · · · bn = (λ1)
m1(λ2)

m2 · · · (λk)mk .

Section 6.1

(3.) In C([0, 1]), let f(t) = t and g(t) = et. Compute 〈f, g〉, ||f ||,||g||,
and ||f + g||, and verify the Cauchy-Schwarz inequality (| 〈x, y〉 | ≤ ||x|| ||y||)
and the triangle inequality (||x+ y|| ≤ ||x||+ ||y||).

〈f, g〉 =

∫ 1

0

tet dt = (tet − et)
∣∣∣1
0

= 1

||f || =

√∫ 1

0

t2 dt =

√
1

3

||g|| =

√∫ 1

0

e2t dt =

√
e2t

2

∣∣∣1
0

=

√
e2 − 1

2

||f + g|| =

√∫ 1

0

(t+ et)2 dt =

√∫ 1

0

t2 + 2tet + e2t dt =

√
1

3
+ 2 +

e2 − 1

2

To verify the Cauchy-Schwarz inequality, we see | 〈f, g〉 | = 1, and ||f || ||g|| =√
e2 − 1

6
. Since e2 − 1 > 6, we have | 〈f, g〉 | ≤ ||f || ||g||.

To verify the triangle inequality, since all quantities are non-negative,
we can check that (||f + g||)2 ≤ (||f || + ||g||)2. We have (||f + g||)2 =
1
3

+ 2 + e2−1
2

and (||f ||+ ||g||)2 = 1
3

+ 2
√

1
3

√
e2−1

2
+ e2−1

2
, so we need to check

that
√

1
3

√
e2−1

2
> 1. Since e2 − 1 > 6, this is true.
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(10.) Let V be an inner product space,and suppose that x and y are
orthogonal vectors in V . Prove that ||x + y||2 = ||x||2 + ||y||2. Deduce the
Pythagorean Theorem in R2.

Since x and y are orthogonal, 〈x, y〉 = 〈y, x〉 = 0. Therefore,

||x+ y||2 = 〈x+ y, x+ y〉 = 〈x, x+ y〉+ 〈y, x+ y〉 =

〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉 = 〈x, x〉+ 〈y, y〉 = ||x||2 + ||y||2.

In R2, letting x and y denote the legs of a right triangle (both emanating
from the right angle), so the lengths of the legs are a = ||x|| and b = ||y||,
the hypoteneuse is x− y and the length of the hypoteneuse is c = ||x− y||.
Since x and y are orthogonal, so are x and −y. Therefore by the theorem,
|||x||2 + ||y||2 = ||x− y||2, or a2 + b2 = c2.

(17.) Let T be a linear operator on an inner product space V , and suppose
that ||T (x)|| = ||x|| for all x. Prove that T is one-to-one.

If x 6= 0, then ||x|| > 0, so ||T (x)|| > 0, and T (x) 6= 0. Therefore,
N(T ) = {0}, and T is one-to-one.

Additional problem from Wednesday:
Suppose V is an n-dimensional vector field over the field F , where F

is either R or C, and 〈, 〉 denotes the standard inner product on F n. Let
β = {v1, v2, . . . , vn} be an ordered basis for V . For v, w ∈ V , define

〈〈v, w〉〉 = 〈[v]β, [w]β〉 .

(a.) Show that 〈〈, 〉〉 is an inner product on V .
(b.) Show that β is an orthonormal set for this inner product.

To show that 〈〈, 〉〉 satisfies the definition of an inner product, we use the
fact that the function taking v to [v]β is an isomorphism, along with the fact
that 〈, 〉 is an inner product on F n.

〈〈x+ y, z〉〉 = 〈[x+ y]β, [z]β〉 = 〈[x]β + [y]β, [z]β〉 =

〈[x]β, [z]β〉+ 〈[y]β, [z]β〉 = 〈〈x, z〉〉+ 〈〈y, z〉〉

〈〈cx, z〉〉 = 〈[cx]β, [z]β〉 = 〈c[x]β, [z]β〉 = c 〈[x]β, [z]β〉 = c 〈〈x, z〉〉
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〈〈y, x〉〉 = 〈[y]β, [x]β〉 = 〈[x]β, [y]β〉 = 〈〈x, y〉〉
If x 6= 0 then [x]β 6= 0, and so

〈〈x, x〉〉 = 〈[x]β, [x]β〉 > 0.

To show that β is an orthonormal set, we use the fact that [vi]β = ei.
Therefore

〈〈vi, vj〉〉 = 〈ei, ej〉 =

{
1 i = j;

0 i 6= j.

Section 6.2

(2.) Apply the Gram-Schmidt process to S to obtain an orthogonal basis
for span(S). Normalize the vectors to obtain an orthonormal basis β. Com-
pute the Fourier coefficients of the given vector relative to β. Use Theorem
6.5 to check your result.

Theorem 6.5 says that if β = {v1, v2, . . . , vn} and vinspan(S), then x =
a1v1 + a2v2 + · · ·+ anvn, where a1, a2, . . . , an are the Fourier coefficients of v
relative to β.

(a.) V = R3, S = {(1, 1, 1), (0, 1, 1), (1, 3, 3)} and x = (1, 1, 2).

v1 = (1, 0, 1).

v2 = (0, 1, 1)− 〈(0,1,1), (1,0,1)〉
〈(1,0,1), (1,0,1)〉(1, 0, 1) = (0, 1, 1)− 1

2
(1, 0, 1) = (−1

2
, 1, 1

2
).

v3 = (1, 3, 3)− 〈(1,3,3), (1,0,1)〉
〈(1,0,1), (1,0,1)〉(1, 0, 1)− 〈(1,3,3), (− 1

2
, 1, 1

2
)〉

〈(− 1
2
, 1, 1

2
), (− 1

2
, 1, 1

2
)〉(−

1
2
, 1, 1

2
) =

(1, 3, 3)− 4
2
(1, 0, 1)− 4

3
2

(−1
2
, 1, 1

2
) = (1

3
, 1

3
, −1

3
).

Normalizing these vectors:
β = {(

√
2

2
, 0,

√
2

2
), (−

√
6

6
, 2
√

6
6
,
√

6
6

), (
√

3
3
,
√

3
3
, −

√
3

3
)}.

The Fourier coefficients of (1, 1, 2) are:〈
(1, 1, 2), (

√
2

2
, 0,

√
2

2
)
〉

= 3
√

2
2〈

(1, 1, 2), (−
√

6
6
, 2
√

6
6
,
√

6
6

)
〉

=
√

6
2〈

(1, 1, 2), (
√

3
3
,
√

3
3
, −

√
3

3
)
〉

= 0.

To check:
3
√

2
2

(
√

2
2
, 0,

√
2

2
)+
√

6
2

(−
√

6
6
, 2
√

6
6
,
√

6
6

)+0(
√

3
3
,
√

3
3
, −

√
3

3
) = (3

2
, 0, 3

2
)+(−1

2
, 1, 1

2
)+

(0, 0, 0) = (1, 1, 2).
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(c.) V = P2(R), 〈f(x), g(x)〉 =
∫ 1

0
f(x)g(x) dx, X = {1, x, x2}, h(x) =

1 + x.

v1 = 1

v2 = x− 〈x, 1〉〈1, 1〉1 = x−
R 1
0 x dxR 1
0 1 dx

= x− 1
2

v3 = x2− 〈x
2, 1〉
〈1, 1〉 1− 〈x

2, x− 1
2〉

〈x− 1
2
, x− 1

2〉
(x− 1

2
) = x2−

R 1
0 x

2 dxR 1
0 1 dx

−
R 1
0 x

3− 1
2
x2 dxR 1

0 x
2−x+ 1

4
dx

(x− 1
2
) =

x2 − 1
3
− (1)(x− 1

2
) = x2 − x+ 1

6

Normalizing these vectors:
β = {1, 2

√
3x−

√
3, 6

√
55

11
x2 − 6

√
55

11
x+

√
55

11
}.

The Fourier coefficients of 1 + x are:
〈1 + x, 1〉 =

∫ 1

0
(1 + x)(1) dx = 3

2〈
1 + x, 2

√
3x−

√
3
〉

=
∫ 1

0
(1 + x)(2

√
3x−

√
3) dx =

√
3

6〈
1 + x, 6

√
55

11
x2 − 6

√
55

11
x+

√
55

11

〉
=
∫ 1

0
(1+x)(6

√
55

11
x2− 6

√
55

11
x+

√
55

11
) dx = 0

To check:
3
2
(1) +

√
3

6
(2
√

3x−
√

3) + 0(6
√

55
11

x2 − 6
√

55
11

x+
√

55
11

) = x+ 1.

(d.) V = span(S), S = {(1, i, 0), (1− i, 2, 4i)}, x = (3 + i, 4i,−4).

v1 = (1, i, 0)

v2 = (1−i, 2, 4i)− 〈(1−i, 2, 4i), (1,i,0)〉
〈(1,i,0), (1,i,0)〉 (1, i, 0) = (1−i, 2, 4i)− (1−i)(1)+(2)(−i)+(4i)(0)

(1)(1)+(i)(−i)+(0)(0)
(1, i, 0) =

(1− i, 2, 4i)− 1−3i
2

(1, i, 0) = (1− i, 2, −4i)− (1−3i
2
, 3+i

2
, 0) = (1+i

2
, 1−i

2
, 4i)

Normalizing these vectors:
β = {

√
2

2
(1, i, 0),

√
17

34
(1 + i, 1− i, 8i)}.

The Fourier coefficients of (3 + i, 4i, −4) are:〈
(3 + i, 4i, −4),

√
2

2
(1, i, 0)

〉
=

√
2

2
((3 + i)(1) + (4i)(−i) + (−4)(0) =

√
2

2
(7 + i)〈

(3 + i, 4i, −4),
√

17
34

(1 + i, 1− i, 8i)
〉

=
√

17
34

((3 + i)(1− i) + (4i)(1 + i) +

(−4)(−8i) =
√

17
34

(34i)
To check:√

2
2

(7 + i)
√

2
2

(1, i, 0) +
√

17
34

(34i)
√

17
34

(1 + i, 1− i, 8i) = (3 + i, 4i,−4)

(7.) Let β be a basis for a subspace W of an inner product space V , and
let z ∈ V . Prove that z ∈ W⊥ if and only if 〈z, v〉 = 0 for every z ∈ β.

By definition, if z ∈ W⊥ then z is orthogonal to every v ∈ W , so in
particular, 〈z, v〉 = 0 for every v ∈ β.
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For the converse, suppose that 〈z, v〉 = 0 for every v ∈ β. To show
z ∈ W⊥, let w be any element of W . We must show 〈z, w〉 = 0.

Since β is a basis for W , we can write w as a linear combination of
elements of β, as w = a1v1+· · ·+akvk. Now 〈z, w〉 = 〈z, a1v1 + · · ·+ akvk〉 =
〈z, a1v1〉+· · ·+〈z, akvk〉 = a1 〈z, v1〉+· · ·+ak 〈z, vk〉 = a1(0)+· · ·+ak(0) = 0.

Notice here: We used only that β generates W , not that β is linearly
independent. Therefore, we have shown that β⊥ = (span(β))⊥ for any β ⊆
V .

(9.) Let W = span({(i, 0, 1)}) in C3. Find orthonormal bases for W and
W⊥.

An orthonormal basis for W is
√

2
2

(i, 0, 1). An orthonormal basis for W⊥

is {
√

2
2

(1, 0, i), (0, 1, 0)}.

(12.) Prove for every matrix A ∈Mm×n(F ), (R(LA∗))⊥ = N(LA).

For the purposes of this proof, let · denote the “dot product”, so that
(x1, x2, . . . , xn) · (y1, y2, . . . , yn) = x1y1 + x2y2 + · · · + xnyn. Thus, if the
rows of A are r1, r2, . . . , rm ∈ Fm, and x ∈ F n, then the entries of Ax are
x · r1, x · r2, . . . , x · rm.

Also, if y = (y1, y2, . . . , yn), let y denote (y1, y2, . . . , yn). Notice that we
can define the standard inner product by 〈x, y〉 = x · y. This is equivalent to
〈x, y〉 = x · y.

Now x ∈ N(LA) if and only if all the entries of Ax are zero; that is, if
and only if x · ri = 0 for i = 1, 2, . . . ,m; or, if and only if 〈x, ri〉 = 0 for
i = 1, 2, . . . ,m. Now ri is the ith column of A∗. Therefore, we have shown
that x ∈ N(LA) if and only if x is orthogonal to every column of A∗. Let
S be the set of columns of A∗; then x ∈ N(LA) if and only if x ∈ S⊥, so
N(LA) = S⊥.

The span of S is R(LA∗). If we show S⊥ = (span(S))⊥, we will be done.
But that is just what we showed in problem (7).
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