
Math 24
Spring 2012

Sample Homework Solutions
Week 7

Section 4.3

(3.) Use Cramer’s Rule to solve the system of linear equations

2x1 + x2 − 3x3 = 5

x1 − 2x2 + x3 = 10

3x1 + 4x2 − 2x3 = 0

In each case, I first simplify the determinant, in the first case by sub-
tracting row 1 and row 2 from row 3, and in the other cases, by subtracting
2 times row 1 from row 2.∣∣∣∣∣∣

2 1 −3
1 −2 1
3 4 −2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2 1 −3
1 −2 1
0 5 0

∣∣∣∣∣∣ = −5

∣∣∣∣2 −3
1 1

∣∣∣∣ = −25

∣∣∣∣∣∣
5 1 −3
10 −2 1
0 4 −2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
5 1 −3
0 −4 7
0 4 −2

∣∣∣∣∣∣ = 5

∣∣∣∣−4 7
4 −2

∣∣∣∣ = −100

∣∣∣∣∣∣
2 5 −3
1 10 1
3 0 −2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2 5 −3
−3 0 7
3 0 −2

∣∣∣∣∣∣ = 5

∣∣∣∣−3 7
3 −2

∣∣∣∣ = 75

∣∣∣∣∣∣
2 1 5
1 −2 10
3 4 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2 1 5
−3 −4 0
3 4 0

∣∣∣∣∣∣ = 0

x1 =
−100

−25
= 4 x2 =

75

−25
= −3 x3 =

0

−25
= 0
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(12.) A matrix Q is called orthogonal if QQt = I. Prove that if Q is
orthogonal then det(Q) = ±1.

We know that det(Qt) = det(Q), and that det(AB) = det(A)det(B).
Therefore, if Q is orthogonal, we have

1 = det(I) = det(QQt) = det(Q)det(Qt) = det(Q)det(Q) = (det(Q))2,

and therefore det(Q) = ±1.

Section 4.4

(4.) Evaluate the determinant by any legitimate method

(e)

 i 2 −1
3 i+ 1 2
−2i 1 4− i


Simplify by adding multiples of row 1 to rows 2 and 3:

∣∣∣∣∣∣
i 2 −1
3 i+ 1 2
−2i 1 4− i

∣∣∣∣∣∣ =

∣∣∣∣∣∣
i 2 −1
0 1 + 7i 2− 3i
0 5 2− i

∣∣∣∣∣∣ = i

∣∣∣∣1 + 7i 2− 3i
5 2− i

∣∣∣∣ = −28− i

(g)


1 0 −2 3
−3 1 1 2
0 4 −1 1
2 3 0 1


Simplify by adding multiples of row 1 to rows 2 and 4:∣∣∣∣∣∣∣∣

1 0 −2 3
−3 1 1 2
0 4 −1 1
2 3 0 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0 −2 3
0 1 −5 11
0 4 −1 1
0 3 4 −5

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 −5 11
4 −1 1
3 4 −5

∣∣∣∣∣∣
Simplify by adding multiples of row 1 to rows 2 and 3:
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∣∣∣∣∣∣
1 −5 11
4 −1 1
3 4 −5

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 −5 11
0 19 −43
0 19 −38

∣∣∣∣∣∣ =

∣∣∣∣19 −43
19 −38

∣∣∣∣ = 19

∣∣∣∣1 −43
1 −38

∣∣∣∣ = 95

Section 3.2

(21.) Let A be an m× n matrix with rank m. Prove that there exists an
n×m matrix B such that AB = Im.

We know that AB = Im if and only if LAB = IFm ; that is, if and only if
LALB = IFm . So we need to find a linear transformation T : Fm → Fn such
that LAT = IFm , and then let B be the matrix of T relative to the standard
bases, so T = LB.

We know that LA : F n → Fm has rank m; that is, it is onto.
We need to find T : Fm → F n such that LA(T (v)) = v for all v ∈ Fm.

We use the fact that we can define a linear transformation however we like
on the elements of a basis.

Because LA is onto, we can choose vi ∈ F n such that LA(vi) = ei for
i = 1, . . . ,m. Then define T so that T (ei) = vi for i = 1, . . . ,m. Therefore, on
the standard basis for Fm, we have LA(T (ei)) = LA(vi) = ei = IFm(ei). Now,
because LAT equals IFn on the standard basis, and linear transformations
are determined by their action on a basis, we have LAT = IFn , which is what
we needed.

We might note that the ith column of B is the vector vi we chose such
that LA(vi) = ei, that is, Avi = ei.

If n > m, then LA is onto but not one-to-one, so there are many possible
choices for vi, and therefore many possible choices for B.

Section 4.3

(21.) Prove that if M ∈ Mn×n(F ) can be written in the form M =(
A B
0 C

)
, where A and C are square matrices, then det(M) = det(A)det(C).

Suppose that A is m × m. By type 3 elementary row operations using

rows 1 through m of M , convert A to upper triangular form so M =

(
A B
0 C

)
3



becomes M∗ =

(
A∗ B∗

0 C

)
. Now, by type 3 elementary row operations using

rows m + 1 through n of M∗, convert C to upper triangular form so M∗ =(
A∗ B∗

0 C

)
becomes M∗∗ =

(
A∗ B∗

0 C∗

)
.

Because type 3 elementary operations do not change the determinant,
det(M∗∗) = det(M), det(A∗) = det(A), and det(C∗) = det(C). But because
M∗∗, A∗, and C∗ are upper triangular, their determinants are the products
of their diagonal entries, so

det(M) = det(M∗∗) = det(A∗)det(C∗) = det(A)det(C).

Section 5.1

(3.) Find the eigenvalues, corresponding eigenvectors, and, if possible, a
basis of eigenvectors and an invertible Q and diagonal B such that Q−1AQ =
D.

The eigenvalues of A are the roots of the characteristic polynomial, A−λI.
For a given λ, the eigenvectors are the nonzero elements of the null space of
A− λI, which we can find by row-reducing A− λI.

If there is a basis β of eigenvectors, Q will be the matrix that changes
from β-coordinates to standard coordinates (its columns will be the vectors
in β), and the diagonal entries of D will be the eigenvalues corresponding to
the eigenvectors of β.

(c) A =

(
i 1
2 −i

)
; F = C.

The characteristic polynomial is (i−λ)(−i−λ)−2 = λ2−1; the eigenvalues
are λ = 1 and λ = −1, and corresponding eigenvectors are t(1, 1− i) (t 6= 0)
and t(1,−1 − i) (t 6= 0). A basis of eigenvectors is {(1, 1 − i), (1,−1 − i)},

Q =

(
1 1

1− i −1− i

)
, D =

(
1 0
0 −1

)
.

(d) A =

2 0 −1
4 1 −4
2 0 −1

; F = R.
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The characteristic polynomial is (1−λ)((2−λ)(−1−λ)+2) = −λ(1−λ)2;
the eigenvalues are λ = 0, of multiplicity 1, and λ = 1, of multiplicity 2,
and corresponding eigenvectors are t(1, 4, 2) (t 6= 0) and s(1, 0, 1) + t(0, 1, 0)
((s, t) 6= (0, 0)). A basis of eigenvectors is {(1, 4, 2), (1, 0, 1), (0, 1, 0)}, Q =1 1 0

4 0 1
2 1 0

, D =

0 0 0
0 1 0
0 0 1

.

(4.) Find the eigenvalues and an ordered basis β such that [T ]β is a
diagonal matrix.

If the vector space is not F n, start with any basis α. The eigenvalues are
the eigenvalues of [T ]α, and the eigenvectors are the vectors v such that [v]α
is an eigenvector of [T ]α. Then β will consist of eigenvectors. (That is, solve
the problem on the coordinate level, then move your solution back.)

(a) V = R2 and T (a, b) = (−2a+ 3b,−10a+ 9b).

Let α be the standard basis for R2. Then the matrix [T ]α is

(
−2 3
−10 9

)
,

which has eigenvalues 3 and 4 with corresponding eigenvectors (3, 5) and
(1, 2). Therefore T has eigenvalues 3 and 4, and a basis of eigenvectors is
{(3, 5), (1, 2)}.

(d) V = P1(R) and T (ax+ b) = (−6a+ 2b)x+ (−6a+ b).

Let α = {x, 1} be a basis for P1(R). (Note, this is not the standard

ordered basis, which is {1, x}.) Then the matrix [T ]α is

(
−6 2
−6 1

)
, which

has eigenvalues −3 and −2 with corresponding eigenvectors (2, 3) and (1, 2).
Therefore T has eigenvalues −3 and −2, and a basis of eigenvectors is {2x+
3, x+ 2}.

(h) V = M2×2(R) and T

(
a b
c d

)
=

(
d b
c a

)
.

Let α be the standard basis for M2×2(R). Then the matrix [T ]α is
1 0 0 1
0 0 1 0
0 1 0 0
9 0 0 1

, which has eigenvalues 1, of multiplicity 3, and −1, of mul-
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tiplicity 1, with corresponding eigenvectors (1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 0, 1)
for 1 and (0, 1,−1, 0) for −1.

Therefore T has eigenvalues 1, of multiplicity 3, and −1, of multiplicity

1, and a basis of eigenvectors is

{(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
,

(
0 1
−1 0

)}
.

(7a) Let T be a linear operator on a finite-dimensional vector space V .
We define the determinant of T , denoted det(T ), as follows: Choose any
ordered basis β for V , and define det(T ) = det([T ]β).

Prove that this definition is independent of the choice of an ordered basis
for V . That is, prove that if β and γ are two ordered bases for V , then
det([T ]β) = det([T ]γ).

We know, from our special homework assignments, that we are proving
that the determinant of T is well-defined.

Since [T ]β and [T ]γ are similar matrices, by property (9) on page 236 they
have the same determinant: det([T ]β) = det([T ]γ).
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