Math 24
 Spring 2012
 Sample Homework Solutions
 Week 7

Section 4.3
(3.) Use Cramer's Rule to solve the system of linear equations

$$
\begin{gathered}
2 x_{1}+x_{2}-3 x_{3}=5 \\
x_{1}-2 x_{2}+x_{3}=10 \\
3 x_{1}+4 x_{2}-2 x_{3}=0
\end{gathered}
$$

In each case, I first simplify the determinant, in the first case by subtracting row 1 and row 2 from row 3, and in the other cases, by subtracting 2 times row 1 from row 2 .

$$
\begin{aligned}
& \left|\begin{array}{ccc}
2 & 1 & -3 \\
1 & -2 & 1 \\
3 & 4 & -2
\end{array}\right|=\left|\begin{array}{ccc}
2 & 1 & -3 \\
1 & -2 & 1 \\
0 & 5 & 0
\end{array}\right|=-5\left|\begin{array}{cc}
2 & -3 \\
1 & 1
\end{array}\right|=-25 \\
& \left|\begin{array}{ccc}
5 & 1 & -3 \\
10 & -2 & 1 \\
0 & 4 & -2
\end{array}\right|=\left|\begin{array}{ccc}
5 & 1 & -3 \\
0 & -4 & 7 \\
0 & 4 & -2
\end{array}\right|=5\left|\begin{array}{cc}
-4 & 7 \\
4 & -2
\end{array}\right|=-100 \\
& \left|\begin{array}{ccc}
2 & 5 & -3 \\
1 & 10 & 1 \\
3 & 0 & -2
\end{array}\right|=\left|\begin{array}{ccc}
2 & 5 & -3 \\
-3 & 0 & 7 \\
3 & 0 & -2
\end{array}\right|=5\left|\begin{array}{cc}
-3 & 7 \\
3 & -2
\end{array}\right|=75 \\
& \left|\begin{array}{ccc}
2 & 1 & 5 \\
1 & -2 & 10 \\
3 & 4 & 0
\end{array}\right|=\left|\begin{array}{ccc}
2 & 1 & 5 \\
-3 & -4 & 0 \\
3 & 4 & 0
\end{array}\right|=0 \\
& x_{1}=\frac{-100}{-25}=4 \quad x_{2}=\frac{75}{-25}=-3 \quad x_{3}=\frac{0}{-25}=0
\end{aligned}
$$

(12.) A matrix Q is called orthogonal if $Q Q^{t}=I$. Prove that if Q is orthogonal then $\operatorname{det}(Q)= \pm 1$.

We know that $\operatorname{det}\left(Q^{t}\right)=\operatorname{det}(Q)$, and that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. Therefore, if Q is orthogonal, we have

$$
1=\operatorname{det}(I)=\operatorname{det}\left(Q Q^{t}\right)=\operatorname{det}(Q) \operatorname{det}\left(Q^{t}\right)=\operatorname{det}(Q) \operatorname{det}(Q)=(\operatorname{det}(Q))^{2},
$$

and therefore $\operatorname{det}(Q)= \pm 1$.
Section 4.4
(4.) Evaluate the determinant by any legitimate method
(e) $\left(\begin{array}{ccc}i & 2 & -1 \\ 3 & i+1 & 2 \\ -2 i & 1 & 4-i\end{array}\right)$

Simplify by adding multiples of row 1 to rows 2 and 3:
$\left|\begin{array}{ccc}i & 2 & -1 \\ 3 & i+1 & 2 \\ -2 i & 1 & 4-i\end{array}\right|=\left|\begin{array}{ccc}i & 2 & -1 \\ 0 & 1+7 i & 2-3 i \\ 0 & 5 & 2-i\end{array}\right|=i\left|\begin{array}{cc}1+7 i & 2-3 i \\ 5 & 2-i\end{array}\right|=-28-i$
(g) $\left(\begin{array}{cccc}1 & 0 & -2 & 3 \\ -3 & 1 & 1 & 2 \\ 0 & 4 & -1 & 1 \\ 2 & 3 & 0 & 1\end{array}\right)$

Simplify by adding multiples of row 1 to rows 2 and 4:

$$
\left|\begin{array}{cccc}
1 & 0 & -2 & 3 \\
-3 & 1 & 1 & 2 \\
0 & 4 & -1 & 1 \\
2 & 3 & 0 & 1
\end{array}\right|=\left|\begin{array}{cccc}
1 & 0 & -2 & 3 \\
0 & 1 & -5 & 11 \\
0 & 4 & -1 & 1 \\
0 & 3 & 4 & -5
\end{array}\right|=\left|\begin{array}{ccc}
1 & -5 & 11 \\
4 & -1 & 1 \\
3 & 4 & -5
\end{array}\right|
$$

Simplify by adding multiples of row 1 to rows 2 and 3:

$$
\left|\begin{array}{ccc}
1 & -5 & 11 \\
4 & -1 & 1 \\
3 & 4 & -5
\end{array}\right|=\left|\begin{array}{ccc}
1 & -5 & 11 \\
0 & 19 & -43 \\
0 & 19 & -38
\end{array}\right|=\left|\begin{array}{cc}
19 & -43 \\
19 & -38
\end{array}\right|=19\left|\begin{array}{cc}
1 & -43 \\
1 & -38
\end{array}\right|=95
$$

Section 3.2
(21.) Let A be an $m \times n$ matrix with rank m. Prove that there exists an $n \times m$ matrix B such that $A B=I_{m}$.

We know that $A B=I_{m}$ if and only if $L_{A B}=I_{F^{m}}$; that is, if and only if $L_{A} L_{B}=I_{F^{m}}$. So we need to find a linear transformation $T: F_{m} \rightarrow F_{n}$ such that $L_{A} T=I_{F^{m}}$, and then let B be the matrix of T relative to the standard bases, so $T=L_{B}$.

We know that $L_{A}: F^{n} \rightarrow F^{m}$ has rank m; that is, it is onto.
We need to find $T: F^{m} \rightarrow F^{n}$ such that $L_{A}(T(v))=v$ for all $v \in F^{m}$. We use the fact that we can define a linear transformation however we like on the elements of a basis.

Because L_{A} is onto, we can choose $v_{i} \in F^{n}$ such that $L_{A}\left(v_{i}\right)=e_{i}$ for $i=1, \ldots, m$. Then define T so that $T\left(e_{i}\right)=v_{i}$ for $i=1, \ldots, m$. Therefore, on the standard basis for F^{m}, we have $L_{A}\left(T\left(e_{i}\right)\right)=L_{A}\left(v_{i}\right)=e_{i}=I_{F^{m}}\left(e_{i}\right)$. Now, because $L_{A} T$ equals $I_{F^{n}}$ on the standard basis, and linear transformations are determined by their action on a basis, we have $L_{A} T=I_{F^{n}}$, which is what we needed.

We might note that the $i^{\text {th }}$ column of B is the vector v_{i} we chose such that $L_{A}\left(v_{i}\right)=e_{i}$, that is, $A v_{i}=e_{i}$.

If $n>m$, then L_{A} is onto but not one-to-one, so there are many possible choices for v_{i}, and therefore many possible choices for B.

Section 4.3
(21.) Prove that if $M \in M_{n \times n}(F)$ can be written in the form $M=$ $\left(\begin{array}{cc}A & B \\ 0 & C\end{array}\right)$, where A and C are square matrices, then $\operatorname{det}(M)=\operatorname{det}(A) \operatorname{det}(C)$.

Suppose that A is $m \times m$. By type 3 elementary row operations using rows 1 through m of M, convert A to upper triangular form so $M=\left(\begin{array}{cc}A & B \\ 0 & C\end{array}\right)$
becomes $M^{*}=\left(\begin{array}{cc}A^{*} & B^{*} \\ 0 & C\end{array}\right)$. Now, by type 3 elementary row operations using rows $m+1$ through n of M^{*}, convert C to upper triangular form so $M^{*}=$ $\left(\begin{array}{cc}A^{*} & B^{*} \\ 0 & C\end{array}\right)$ becomes $M^{* *}=\left(\begin{array}{cc}A^{*} & B^{*} \\ 0 & C^{*}\end{array}\right)$.

Because type 3 elementary operations do not change the determinant, $\operatorname{det}\left(M^{* *}\right)=\operatorname{det}(M), \operatorname{det}\left(A^{*}\right)=\operatorname{det}(A)$, and $\operatorname{det}\left(C^{*}\right)=\operatorname{det}(C)$. But because $M^{* *}, A^{*}$, and C^{*} are upper triangular, their determinants are the products of their diagonal entries, so

$$
\operatorname{det}(M)=\operatorname{det}\left(M^{* *}\right)=\operatorname{det}\left(A^{*}\right) \operatorname{det}\left(C^{*}\right)=\operatorname{det}(A) \operatorname{det}(C) .
$$

Section 5.1
(3.) Find the eigenvalues, corresponding eigenvectors, and, if possible, a basis of eigenvectors and an invertible Q and diagonal B such that $Q^{-1} A Q=$ D.

The eigenvalues of A are the roots of the characteristic polynomial, $A-\lambda I$. For a given λ, the eigenvectors are the nonzero elements of the null space of $A-\lambda I$, which we can find by row-reducing $A-\lambda I$.

If there is a basis β of eigenvectors, Q will be the matrix that changes from β-coordinates to standard coordinates (its columns will be the vectors in β), and the diagonal entries of D will be the eigenvalues corresponding to the eigenvectors of β.
(c) $A=\left(\begin{array}{cc}i & 1 \\ 2 & -i\end{array}\right) ; F=\mathbb{C}$.

The characteristic polynomial is $(i-\lambda)(-i-\lambda)-2=\lambda^{2}-1$; the eigenvalues are $\lambda=1$ and $\lambda=-1$, and corresponding eigenvectors are $t(1,1-i)(t \neq 0)$ and $t(1,-1-i)(t \neq 0)$. A basis of eigenvectors is $\{(1,1-i),(1,-1-i)\}$, $Q=\left(\begin{array}{cc}1 & 1 \\ 1-i & -1-i\end{array}\right), D=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
(d) $A=\left(\begin{array}{lll}2 & 0 & -1 \\ 4 & 1 & -4 \\ 2 & 0 & -1\end{array}\right) ; F=\mathbb{R}$.

The characteristic polynomial is $(1-\lambda)((2-\lambda)(-1-\lambda)+2)=-\lambda(1-\lambda)^{2}$; the eigenvalues are $\lambda=0$, of multiplicity 1 , and $\lambda=1$, of multiplicity 2 , and corresponding eigenvectors are $t(1,4,2)(t \neq 0)$ and $s(1,0,1)+t(0,1,0)$ $((s, t) \neq(0,0))$. A basis of eigenvectors is $\{(1,4,2),(1,0,1),(0,1,0)\}, Q=$ $\left(\begin{array}{lll}1 & 1 & 0 \\ 4 & 0 & 1 \\ 2 & 1 & 0\end{array}\right), D=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.
(4.) Find the eigenvalues and an ordered basis β such that $[T]_{\beta}$ is a diagonal matrix.

If the vector space is not F^{n}, start with any basis α. The eigenvalues are the eigenvalues of $[T]_{\alpha}$, and the eigenvectors are the vectors v such that $[v]_{\alpha}$ is an eigenvector of $[T]_{\alpha}$. Then β will consist of eigenvectors. (That is, solve the problem on the coordinate level, then move your solution back.)
(a) $V=\mathbb{R}^{2}$ and $T(a, b)=(-2 a+3 b,-10 a+9 b)$.

Let α be the standard basis for \mathbb{R}^{2}. Then the matrix $[T]_{\alpha}$ is $\left(\begin{array}{cc}-2 & 3 \\ -10 & 9\end{array}\right)$, which has eigenvalues 3 and 4 with corresponding eigenvectors $(3,5)$ and $(1,2)$. Therefore T has eigenvalues 3 and 4 , and a basis of eigenvectors is $\{(3,5),(1,2)\}$.
(d) $V=P_{1}(\mathbb{R})$ and $T(a x+b)=(-6 a+2 b) x+(-6 a+b)$.

Let $\alpha=\{x, 1\}$ be a basis for $P_{1}(\mathbb{R})$. (Note, this is not the standard ordered basis, which is $\{1, x\}$.) Then the matrix $[T]_{\alpha}$ is $\left(\begin{array}{ll}-6 & 2 \\ -6 & 1\end{array}\right)$, which has eigenvalues -3 and -2 with corresponding eigenvectors $(2,3)$ and $(1,2)$. Therefore T has eigenvalues -3 and -2 , and a basis of eigenvectors is $\{2 x+$ $3, x+2\}$.
(h) $V=M_{2 \times 2}(\mathbb{R})$ and $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}d & b \\ c & a\end{array}\right)$.

Let α be the standard basis for $M_{2 \times 2}(\mathbb{R})$. Then the matrix $[T]_{\alpha}$ is $\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 9 & 0 & 0 & 1\end{array}\right)$, which has eigenvalues 1 , of multiplicity 3 , and -1 , of mul-
tiplicity 1 , with corresponding eigenvectors $(1,0,0,0),(0,1,1,0),(0,0,0,1)$ for 1 and $(0,1,-1,0)$ for -1 .

Therefore T has eigenvalues 1 , of multiplicity 3 , and -1 , of multiplicity 1 , and a basis of eigenvectors is $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right\}$.
(7a) Let T be a linear operator on a finite-dimensional vector space V. We define the determinant of T, denoted $\operatorname{det}(T)$, as follows: Choose any ordered basis β for V, and define $\operatorname{det}(T)=\operatorname{det}\left([T]_{\beta}\right)$.

Prove that this definition is independent of the choice of an ordered basis for V. That is, prove that if β and γ are two ordered bases for V, then $\operatorname{det}\left([T]_{\beta}\right)=\operatorname{det}\left([T]_{\gamma}\right)$.

We know, from our special homework assignments, that we are proving that the determinant of T is well-defined.

Since $[T]_{\beta}$ and $[T]_{\gamma}$ are similar matrices, by property (9) on page 236 they have the same determinant: $\operatorname{det}\left([T]_{\beta}\right)=\operatorname{det}\left([T]_{\gamma}\right)$.

