Math 24
 Spring 2012
 Sample Homework Solutions
 Week 6

Section 3.2
(19.) Let A be an $m \times n$ matrix with rank m and B be an $n \times p$ matrix with rank n. Determine the rank of $A B$. Justify your answer.

By the correspondence between matrices and linear transformations, we can rephrase this problem as follows: $L_{A}: F^{n} \rightarrow F^{m}$ has rank m, and $L_{B}: F^{p} \rightarrow F^{n}$ has rank n. Find the rank of $L_{A B}=L_{A} L_{B}: F^{p} \rightarrow F^{m}$.

Since L_{B} has rank n, its range has dimension n; since its codomain F^{n} has dimension n, this means L_{B} must be onto; its range is F^{n}, the entire domain of L_{A}. Therefore anything in the range of L_{A} is in the range of $L_{A} L_{B}$, so $L_{A} L_{B}$ has the same rank as L_{A}. Therefore $L_{A B}$ has rank m, as does $A B$.

Notice the general result: If T is onto, then U and $U T$ have the same range, hence the same rank. You showed the "dual" fact in problem 5(b) of the take-home midterm: If U is one-to-one, then T and $U T$ have the same null space, hence the same nullity.

Section 3.3
(1.) The answers are in the back of the book.
(2d.) Find the dimension of, and a basis for, the solution set.

$$
\begin{gathered}
2 x_{1}+x_{2}-x_{3}=0 \\
x_{1}-x_{2}+x_{3}=0 \\
x_{1}+2 x_{2}-2 x_{3}=0
\end{gathered}
$$

This system is converted by row reduction into the following system.

$$
\begin{gathered}
x=0 \\
y-z=0
\end{gathered}
$$

We can see that the general solution is $x=0, y=z$, or $(x, y, z)=$ $t(0,1,1)$; the solution set has dimension 1 and a basis is $\{(0,1,1)\}$.
(3d.) Find the general solution, given that one solution is $(x, y, z)=$ $(2,2,1)$.

$$
\begin{gathered}
2 x_{1}+x_{2}-x_{3}=5 \\
x_{1}-x_{2}+x_{3}=1 \\
x_{1}+2 x_{2}-2 x_{3}=4
\end{gathered}
$$

The corresponding homogeneous system, by problem (2d) has solution $(x, y, z)=t(0,1,1)$, so this system has solution $(x, y, z)=t(0,1,1)+(2,2,1)$.
(7c.) Use Theorem 3.1 to determine whether the system has a solution:

$$
\begin{gathered}
x_{1}+2 x_{2}+3 x_{3}=1 \\
x_{1}+x_{2}-x_{3}=0 \\
x_{1}+2 x_{2}+x_{3}=3
\end{gathered}
$$

The coefficient matrix of this system is $\left(\begin{array}{ccc}1 & 2 & 3 \\ 1 & 1 & -1 \\ 1 & 2 & 1\end{array}\right)$, and the augmented matrix is $\left(\begin{array}{cccc}1 & 2 & 3 & 1 \\ 1 & 1 & -1 & 0 \\ 1 & 2 & 1 & 3\end{array}\right)$. Since both matrices have three linearly independent rows, they both have rank 3, and since they have the same rank, the system has a solution.

Section 3.4
(3.) Suppose that the augmented matrix of a system $A x=b$ is transformed into a matrix $\left(A^{\prime} \mid b^{\prime}\right)$ in reduced row echelon form by a finite sequence of elementary row operations.
(a.) Prove that $\operatorname{rank}\left(A^{\prime}\right) \neq \operatorname{rank}\left(A^{\prime} \mid b^{\prime}\right)$ if and only if $\left(A^{\prime} \mid b^{\prime}\right)$ contains a row in which the only nonzero entry lies in the last column.

Since $\left(A^{\prime} \mid b^{\prime}\right)$ is in reduced row echelon form, all its nonzero rows are linearly independent, and the same applies to A^{\prime}. Therefore, $\operatorname{rank}\left(A^{\prime}\right) \neq$ $\operatorname{rank}\left(A^{\prime} \mid b^{\prime}\right)$ if and only if, for some i, row i is a zero row of A^{\prime} but a nonzero row of $\left(A^{\prime} \mid b^{\prime}\right)$. This can happen if and only if the only nonzero entry of row i is in the last column.
(b.) Deduce that $A x=b$ is consistent if and only if $\left(A^{\prime} \mid b^{\prime}\right)$ contains no row in which the only nonzero entry is in the last column.

By Theorem 3.1 $A x=b$ is consistent if and only if $\operatorname{rank}(A)=\operatorname{rank}(A \mid b)$. Since elementary row operations do not change the rank of a matrix, this is true if and only if $\operatorname{rank}\left(A^{\prime}\right)=\operatorname{rank}\left(A^{\prime} \mid b^{\prime}\right)$. By part (a), this is true if and only if $\left(A^{\prime} \mid b^{\prime}\right)$ contains no row in which the only nonzero entry lies in the last column.
(4.) For each system, apply (3) to determine whether it is consistent; if it is, find all solutions; find a basis for the solution set of the corresponding homogeneous system.
(a.)

$$
\begin{gathered}
x_{1}+2 x_{2}-x_{3}+x_{4}=2 \\
2 x_{1}+x_{2}+x_{3}-x_{4}=3 \\
x_{1}+2 x_{2}-3 x_{3}+2 x_{4}=2
\end{gathered}
$$

The reduced row echelon form of the augmented matrix of this system is $\left(\begin{array}{ccccc}1 & 0 & 0 & -\frac{1}{2} & \frac{4}{3} \\ 0 & 1 & 0 & \frac{1}{2} & \frac{1}{3} \\ 0 & 0 & 1 & -\frac{1}{2} & 0\end{array}\right)$. By (3), the system is consistent. The general solution is $\left(\frac{4}{3}, \frac{1}{3}, 0,0\right)+t\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, 1\right)$, and a basis for the solution set of the corresponding homogeneous system is $\left\{\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}, 1\right)\right\}$.
(b.)

$$
\begin{gathered}
x_{1}+x_{2}-3 x_{3}+x_{4}=-2 \\
x_{1}+x_{2}+x_{3}-x_{4}=2 \\
x_{1}+x_{2}-x_{3}=0
\end{gathered}
$$

The reduced row echelon form of the augmented matrix of this system is $\left(\begin{array}{ccccc}1 & 1 & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 1 & -\frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$. By (3), the system is consistent. The general solution
is $(1,0,1,0)+s(-1,1,0,0)+t\left(\frac{1}{2}, 0, \frac{1}{2}, 1\right)$, and a basis for the solution set of the corresponding homogeneous system is $\left\{(-1,1,0,0),\left(\frac{1}{2}, 0, \frac{1}{2}, 1\right)\right\}$.

The reduced row echelon form of the augmented matrix of this system is The reduced row echelon form of the augmented matrix of this system is $\left(\begin{array}{ccccc}1 & 1 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$. By (3), the system is inconsistent. The coefficient matrix is the same as in (b), so a basis for the solution set of the corresponding homogeneous system is $\left\{(-1,1,0,0),\left(\frac{1}{2}, 0, \frac{1}{2}, 1\right)\right\}$.
(7.) It can be shown that the vectors $u_{1}=(2,-3,1), u_{2}=(1,4,-2)$, $u_{3}=(-8,12,-4), u_{4}=(1,37,-17)$, and $u_{5}=(-3,-5,8)$ genreate \mathbb{R}^{3}. Find a subset of $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ that is a basis for \mathbb{R}^{3}.

In the reduced row echelon form of the matrix whose columns are u_{1}, u_{2}, u_{3}, u_{4}, and u_{5}, columns 1,2 and 5 are linearly independent. Therefore, $\left\{u_{1}, u_{2}, u_{5}\right\}$ is linearly independent, and is a basis for \mathbb{R}^{3}.

Section 4.1
(3a.) Find $\operatorname{det}\left(\begin{array}{cc}-1+i & 1-4 i \\ 3+2 i & 2-3 i\end{array}\right)$.
$(-1+i)(2-3 i)-(3+2 i)(1-4 i)=-10+15 i$.
Section 4.2
(10.) Find $\operatorname{det}\left(\begin{array}{ccc}i & 2+i & 0 \\ -1 & 3 & 2 i \\ 0 & -1 & 1-i\end{array}\right)$ by cofactor expansion along the second row.
$-(-1)\left|\begin{array}{cc}2+i & 0 \\ -1 & 1-i\end{array}\right|+3\left|\begin{array}{cc}i & 0 \\ 0 & 1-i\end{array}\right|-2 i\left|\begin{array}{cc}i & 2+i \\ 0 & -1\end{array}\right|=4+2 i$.
(22.) Find $\left|\begin{array}{cccc}1 & -2 & 3 & -12 \\ -5 & 12 & -14 & 19 \\ -9 & 22 & -10 & 31 \\ -4 & 9 & -14 & 14\end{array}\right|$.

We use the fact that type 3 row and column operations do not change the determinant. Adding multiples of row 1 to the other rows gives
$\left|\begin{array}{cccc}1 & -2 & 3 & -12 \\ 0 & 22 & -19 & 79 \\ 0 & 4 & 17 & -77 \\ 0 & 1 & -2 & -34\end{array}\right|$, and cofactor expansion along the first column gives $\begin{array}{|cc|}22 & -19\end{array} \quad 79$
$\left|\begin{array}{ccc}4 & 17 & -77 \\ 1 & -2 & -34\end{array}\right|$. Adding multiples of the third row to the other two rows gives $\left|\begin{array}{ccc}0 & 25 & 827 \\ 0 & 25 & 59 \\ 1 & -2 & -34\end{array}\right|$, and cofactor expansion along the first column gives $\left|\begin{array}{cc}25 & 827 \\ 25 & 59\end{array}\right|$. Subtracting the first row from the second row gives $\left|\begin{array}{cc}55 & 827 \\ 0 & -768\end{array}\right|=$ $(25)(-768)=-19,200$.
(26.) Let $A \in M_{n \times n}(F)$. Under what conditions is $\operatorname{det}(-A)=\operatorname{det}(A)$?

Let's start out with a more general question. Suppose c is any scalar. Then to convert A to $c A$ by elementary row operations, you multiply each row of A by c. Each one of those operations multiplies the determinant by c, so since A has n rows, we see $\operatorname{det}(c A)=c^{n} \operatorname{det}(A)$. Therefore, $\operatorname{det}(c A)=\operatorname{det}(A)$ when $c^{n} \operatorname{det}(A)=\operatorname{det}(A)$, which happens when $\operatorname{det}(A)=0$ or $c^{n}=1$.

We can write $-A=(-1) A$, so $\operatorname{det}(-A)=\operatorname{det}(A)$ when $\operatorname{det}(A)=0$ or when $(-1)^{n}=1$. Now $(-1)^{n}=1$ when n is even.

However, $(-1)^{n}=1$ also holds when $-1=1$; that is, when $1+1=0$. This can happen: remember back to our discussion of fields, when we looked at the field \mathbb{Z}_{2} whose only elements are 0 and 1 , and in which $1+1=0$. A field in which $1+1=0$ is said to have characteristic 2 .

Putting it all together, $\operatorname{det}(-A)=\operatorname{det}(A)$ if and only if at least one of these three conditions holds:

1. n is even;
2. F has characteristic 2 ;
3. $\operatorname{det}(A)=0$.
