Math 24
 Spring 2012
 Sample Homework Solutions
 Week 5

Section 3.1
(1.) The answers are in the back of the book.
(2.)

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 0 & 1 \\
1 & -1 & 1
\end{array}\right) \quad B=\left(\begin{array}{ccc}
1 & 0 & 3 \\
1 & -2 & 1 \\
1 & -3 & 1
\end{array}\right) \quad C=\left(\begin{array}{ccc}
1 & 0 & 3 \\
0 & -2 & -2 \\
1 & -3 & 1
\end{array}\right)
$$

To convert A to B, add -2 times column 1 to column 2.
To convert B to C, add -1 times row 1 to row 3 .
To convert C to I_{3}, add -1 times row 1 to row 3 , add -3 times column 1 to column 3 , multiply row 2 by $-\frac{1}{2}$, add 3 times row 2 to row 3 add -1 times column 2 to column 3 .
(3.) Use the proof of Theorem 3.2 to obtain the inverse of each of these matrices. The proof of Theorem 3.2 shows that if I is converted to A by some row or column operation, then I is converted to A^{-1} by the inverse row or column operation.
(a.) $A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$. We can convert I to A by switching rows 1 and 3 , and so we can convert I to A^{-1} by switching rows 1 and $3 . A^{-1}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$.
(b.) $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right)$. We can convert I to A by multiplying column 2 by 3 , and so we can convert I to A^{-1} by multiplying column 2 by $\frac{1}{3}$. $A^{-1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1\end{array}\right)$.
(c.) $A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right)$. We can convert I to A by adding -2 times row 1 to row 3 , and so we can convert I to A^{-1} by adding 2 times row 1 to row 3. $A^{-1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1\end{array}\right)$.

Section 3.2
(1.) The answers are in the back of the book.
(5f.) $A=\left(\begin{array}{lll}1 & 2 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right)$.
To find the rank and inverse (if there is one) of A, we could try rowreducing the augmented matrix $(A \mid I)$. However, we can see that A has two identical columns, and the remaining column is not a multiple of these, so the number of linearly independent columns of A is $2, \operatorname{rank}(A)=2$, and A is not invertible.
(6e.) Determine whether T is invertible, and if it is, compute T^{-1}.
$T: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ is defined by $\left.T(f)=(f(-1), f(0), f(1))\right)$.
Since $T(1)=(1,1,1), T(x)=(-1,0,1)$, and $T\left(x^{2}\right)=(1,0,1)$, we can write down the matrix of T in the standard bases α for $P_{2}(\mathbb{R})$ and β for $\mathbb{R}^{3}:[T]_{\alpha}^{\beta}=\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1\end{array}\right)$. It is not too hard to see that the columns of the matrix are linearly independent, and so both the matrix and the linear transformation T are invertible. We can use the fact that $\left([T]_{\alpha}^{\beta}\right)^{-1}=\left[T^{-1}\right]_{\beta}^{\alpha}$ to find T^{-1}. First we invert our matrix to find $\left[T^{-1}\right]_{\beta}^{\alpha}$:

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \Longrightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 1 & 0 \\
1 & -1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \Longrightarrow \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & -1 & 1 & 1 & -1 & 0 \\
0 & 1 & 1 & 0 & -1 & 1
\end{array}\right) \Longrightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 \\
0 & 1 & 1 & 0 & -1 & 1
\end{array}\right) \Longrightarrow \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & 2 & 1 & -2 & 1
\end{array}\right) \Longrightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & 1 & \frac{1}{2} & -1 & \frac{1}{2}
\end{array}\right) \Longrightarrow \\
& \left(\begin{array}{ccc:ccc}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & -\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 1 & \frac{1}{2} & -1 & \frac{1}{2}
\end{array}\right) \\
& \text { This tells us that }\left[T^{-1}\right]_{\beta}^{\alpha}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & -1 & \frac{1}{2}
\end{array}\right) \text {, } \\
& {\left[T^{-1}(a, b, c)\right]_{\alpha}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & -1 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
b \\
-\frac{1}{2} a+\frac{1}{2} c \\
\frac{1}{2} a-b+\frac{1}{2} c
\end{array}\right),} \\
& T^{-1}(a, b, c)=b+\left(-\frac{1}{2} a+\frac{1}{2} c\right) x+\left(\frac{1}{2} a-b+\frac{1}{2} c\right) x^{2} .
\end{aligned}
$$

(7.) Express the invertible matrix $A=\left(\begin{array}{lll}1 & 2 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 2\end{array}\right)$ as the product of elementary matrices.

We can convert A to I by the following sequence of elementary row operations.

1. Add -1 times row 1 to row 2 .
2. Add -1 times row 1 to row 3 .
3. Add 1 times row 2 to row 1 .
4. Add $-\frac{1}{2}$ times row 2 to row 3 .
5. Multiply row 2 times $-\frac{1}{2}$.
6. Add -1 times row 3 to row 1 .

Letting E_{i} stand for the elementary matrix corresponding to the $i^{\text {th }}$ operation, and recalling that performing an elementary row operation is the same as multiplying on the left by the corresponding matrix, we see

$$
E_{6} E_{5} E_{4} E_{3} E_{2} E_{1} A=I,
$$

and therefore

$$
A=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} E_{5}^{-1} E_{6}^{-1} .
$$

Since E_{i}^{-1} is the elementary matrix corresponding to the inverse of the $i^{t h}$ operation, we have
$A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{2} & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

