
Math 24
Spring 2012

Sample Homework Solutions
Week 5

Section 3.1

(1.) The answers are in the back of the book.

(2.)

A =

1 2 3
1 0 1
1 −1 1

 B =

1 0 3
1 −2 1
1 −3 1

 C =

1 0 3
0 −2 −2
1 −3 1


To convert A to B, add −2 times column 1 to column 2.
To convert B to C, add −1 times row 1 to row 3.
To convert C to I3, add −1 times row 1 to row 3, add −3 times column

1 to column 3, multiply row 2 by −1

2
, add 3 times row 2 to row 3 add −1

times column 2 to column 3.

(3.) Use the proof of Theorem 3.2 to obtain the inverse of each of these
matrices. The proof of Theorem 3.2 shows that if I is converted to A by
some row or column operation, then I is converted to A−1 by the inverse row
or column operation.

(a.) A =

0 0 1
0 1 0
1 0 0

. We can convert I to A by switching rows 1 and 3,

and so we can convert I to A−1 by switching rows 1 and 3. A−1 =

0 0 1
0 1 0
1 0 0

.

(b.) A =

1 0 0
0 3 0
0 0 1

. We can convert I to A by multiplying column

2 by 3, and so we can convert I to A−1 by multiplying column 2 by 1
3
.

A−1 =

1 0 0
0 1

3
0

0 0 1

.
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(c.) A =

 1 0 0
0 1 0
−2 0 1

. We can convert I to A by adding −2 times row

1 to row 3, and so we can convert I to A−1 by adding 2 times row 1 to row

3. A−1 =

1 0 0
0 1 0
2 0 1

.

Section 3.2

(1.) The answers are in the back of the book.

(5f.) A =

1 2 1
1 0 1
1 1 1

.

To find the rank and inverse (if there is one) of A, we could try row-
reducing the augmented matrix (A|I). However, we can see that A has two
identical columns, and the remaining column is not a multiple of these, so
the number of linearly independent columns of A is 2, rank(A) = 2, and A
is not invertible.
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(6e.) Determine whether T is invertible, and if it is, compute T−1.
T : P2(R)→ R3 is defined by T (f) = (f(−1), f(0), f(1))).

Since T (1) = (1, 1, 1), T (x) = (−1, 0, 1), and T (x2) = (1, 0, 1), we can
write down the matrix of T in the standard bases α for P2(R) and β for

R3: [T ]βα =

1 −1 1
1 0 0
1 1 1

. It is not too hard to see that the columns of

the matrix are linearly independent, and so both the matrix and the linear

transformation T are invertible. We can use the fact that
(
[T ]βα

)−1
= [T−1]αβ

to find T−1. First we invert our matrix to find [T−1]αβ :1 −1 1 | 1 0 0
1 0 0 | 0 1 0
1 1 1 | 0 0 1

 =⇒

1 0 0 | 0 1 0
1 −1 1 | 1 0 0
1 1 1 | 0 0 1

 =⇒

1 0 0 | 0 1 0
0 −1 1 | 1 −1 0
0 1 1 | 0 −1 1

 =⇒

1 0 0 | 0 1 0
0 1 −1 | −1 1 0
0 1 1 | 0 −1 1

 =⇒

1 0 0 | 0 1 0
0 1 −1 | −1 1 0
0 0 2 | 1 −2 1

 =⇒

1 0 0 | 0 1 0
0 1 −1 | −1 1 0
0 0 1 | 1

2
−1 1

2

 =⇒

1 0 0 | 0 1 0
0 1 0 | −1

2
0 1

2

0 0 1 | 1
2
−1 1

2


This tells us that [T−1]αβ =

 0 1 0
−1

2
0 1

2
1
2
−1 1

2

,

[T−1(a, b, c)]α =

 0 1 0
−1

2
0 1

2
1
2
−1 1

2

ab
c

 =

 b
−1

2
a+ 1

2
c

1
2
a− b+ 1

2
c

,

T−1(a, b, c) = b+
(
−1

2
a+ 1

2
c
)
x+

(
1
2
a− b+ 1

2
c
)
x2.
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(7.) Express the invertible matrix A =

1 2 1
1 0 1
1 1 2

 as the product of

elementary matrices.

We can convert A to I by the following sequence of elementary row op-
erations.

1. Add −1 times row 1 to row 2.

2. Add −1 times row 1 to row 3.

3. Add 1 times row 2 to row 1.

4. Add −1
2

times row 2 to row 3.

5. Multiply row 2 times −1
2
.

6. Add −1 times row 3 to row 1.

Letting Ei stand for the elementary matrix corresponding to the ith operation,
and recalling that performing an elementary row operation is the same as
multiplying on the left by the corresponding matrix, we see

E6E5E4E3E2E1A = I,

and therefore
A = E−1

1 E−1
2 E−1

3 E−1
4 E−1

5 E−1
6 .

Since E−1
i is the elementary matrix corresponding to the inverse of the ith

operation, we have

A =

1 0 0
1 1 0
0 0 1

1 0 0
0 1 0
1 0 1

1 −1 0
0 1 0
0 0 1

1 0 0
0 1 0
0 1

2
1

1 0 0
0 −2 0
0 0 1

1 0 1
0 1 0
0 0 1

 .
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