Math 24
 Spring 2012
 Sample Homework Solutions
 Week 4

Section 2.3
(3) Let $g(x)=3+x$. Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ and $U: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ be the linear transformations respectively defined by

$$
\begin{gathered}
T(f(x))=f^{\prime}(x) g(x)+2 f(x) \\
U\left(a+b x+c x^{2}\right)=(a+b, c, a-b)
\end{gathered}
$$

Let β and γ be the standard ordered bases of $P_{3}(\mathbb{R})$ and \mathbb{R}^{3} respectively.
(a) Compute $[U]_{\beta}^{\gamma},[T]_{\beta}$ and $[U T]_{\beta}^{\gamma}$ directly. Then use Theorem 2.11 to verify your result.

To do the direct computations, we need to see that $T(1)=2, T(x)=$ $3+3 x, T\left(x^{2}\right)=6 x+4 x^{2}, U(1)=(1,0,1), U(x)=(1,0,-1), U\left(x^{2}\right)=(0,1,0)$, $U T(1)=U(2)=(2,0,2), U T(x)=U(3+3 x)=(6,0,0), U T\left(x^{2}\right)=U(6 x+$ $\left.4 x^{2}\right)=(6,4,-6)$. This tells us that

$$
[T]_{\beta}=\left(\begin{array}{ccc}
2 & 3 & 0 \\
0 & 3 & 6 \\
0 & 0 & 4
\end{array}\right) \quad[U]_{\beta}^{\gamma}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right) \quad[U T]_{\beta}^{\gamma}=\left(\begin{array}{ccc}
2 & 6 & 6 \\
0 & 0 & 4 \\
2 & 0 & -6
\end{array}\right)
$$

To use Theorem 2.11 to verify this, we must check that $[U T]_{\beta}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\beta}$, which is true.
(b) Let $h(x)=3-2 x+x^{2}$. Compute $[h(x)]_{\beta}$ and $[U(h(x))]_{\gamma}$. Then use $[U]_{\beta}^{\gamma}$ from (a) and Theorem 2.14 to verify your result.

$$
[h(x)]_{\beta}=\left(\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right), U(h(x))=(1,1,5), \text { and so }[U(h(x))]_{\gamma}=\left(\begin{array}{l}
1 \\
1 \\
5
\end{array}\right) . \text { To use }
$$

Theorem 2.14 to verify this, we must check that $[U]_{\beta}^{\gamma}[h(x)]_{\beta}=[U(h(x))]_{\gamma}$, which is true.
(4) For each part, let T be as defined in the corresponding part of Section 2.2 , exercise (5), and use Theorem 2.14 to compute the given vector:
(b) $[T(f(x))]_{\alpha}$, where $f(x)=4-6 x+3 x^{2}$.

In 2.2(5), where α and β are the standard ordered bases of $M_{2 \times 2}(\mathbb{R})$ and $P_{2}(\mathbb{R})$ and $T(f(x))=\left(\begin{array}{cc}f^{\prime}(0) & 2 f(1) \\ 0 & f^{\prime \prime}(3)\end{array}\right)$, we showed that $[T]_{\beta}^{\alpha}=\left(\begin{array}{ccc}1 & 1 & 0 \\ 2 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{array}\right)$.
Therefore

$$
[T(f(x))]_{\alpha}=[T]_{\beta}^{\alpha}[f(x)]_{\beta}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
2 & 2 & 2 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{c}
4 \\
-6 \\
3
\end{array}\right)=\left(\begin{array}{c}
-2 \\
2 \\
0 \\
6
\end{array}\right) .
$$

(d) $[T(f(x))]_{\gamma}$, where $f(x)=6-x+2 x^{2}$.

In 2.2(5), where γ and β are the standard ordered bases of \mathbb{R}^{1} and $P_{2}(\mathbb{R})$ and $T(f(x))=f(2)$, we showed that $[T]_{\beta}^{\gamma}=\left(\begin{array}{lll}1 & 2 & 4\end{array}\right)$. Therefore

$$
[T(f(x))]_{\gamma}=[T]_{\beta}^{\gamma}[f(x)]_{\beta}=\left(\begin{array}{lll}
1 & 2 & 4
\end{array}\right)\left(\begin{array}{c}
6 \\
-1 \\
2
\end{array}\right)=12
$$

(12)(a) Let V, W, and Z be vector spaces, and let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear. Prove that if $U T$ is one-to-one, then T is one-to-one. Must U also be one-to-one?

We use the fact that a linear transformation is one-to-one if and only if its null space is $\{0\}$, and prove the contrapositive.

Suppose that T is not one-to-one. Then $N(T) \neq\{0\}$; that is, there is some nonzero vector $v \in N(T)$, so $T(v)=0$. Then $U T(v)=U(T(v))=U(0)=0$, which shows $v \in N(U T)$. Since v is nonzero, $N(U T) \neq\{0\}$, and so $U T$ is not one-to-one.

It is possible for $U T$ to be one-to-one but U not to be one-to-one. For example, let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and $U: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be defined by $T(x, y)=(x, y, 0)$
and $U(x, y, z)=(x, y)$. Then $U T(x, y)=U(x, y, 0)=(x, y)$, so $U T$ is one-to-one. However, U is not one-to-one; the null space of U is the z-axis.

Section 2.4
(4) Let A and B be $n \times n$ invertible matrices. Prove that $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.

Using the associativity of matrix multiplication,

$$
\begin{aligned}
& (A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A A^{-1}=I \\
& \left(B^{-1} A^{-1}\right)(A B)=B^{-1}\left(A^{-1} A\right) B=B^{-1} B=I
\end{aligned}
$$

Since $B^{-1} A^{-1}$ multiplied by $A B$ in either order gives the identity matrix, by the definition of the inverse of a matrix, $B^{-1} A^{-1}=(A B)^{-1}$. Since $A B$ has an inverse, $A B$ is invertible.
(6) Prove that if A is invertible and $A B=0$ then $B=0$. Here 0 denotes the zero matrix, all of whose entries are zero.

Since every entry of 0 is zero, the product of 0 with any matrix (of the right shape to be multiplied by it) is again a zero matrix. We multiply both sids of $A B=0$ on the left by A^{-1} to get

$$
\begin{gathered}
A^{-1} A B=A^{-1} 0 \\
B=0 .
\end{gathered}
$$

(15) Let V and W be finite-dimensional vector spaces and $T: V \rightarrow W$ be a linear transformation. Suppose that β is a basis for V. Prove that T is an isomorphism if and only if $T(\beta)$ is a basis for W

Let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $T\left(v_{i}\right)=w_{i}$.
By Theorem 2.2, page $68, T(\beta)=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ spans $R(T)$. Since T is onto if and only if $R(T)=W$, this tells us that T is onto if and only if $T(\beta)$ spans W.

Now we argue that T is one-to-one if and only if $T(\beta)$ is linearly independent. This will finish the proof, because we will have that T is an isomorphism iff T is both one-to-one and onto, iff $T(\beta)$ both is linearly independent and spans W, iff $T(\beta)$ is a basis for W.

First, suppose that $T(\beta)$ is not linearly independent. Therefore, for some a_{i} not all zero, we have

$$
a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n}=0
$$

and

$$
T\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}\right)=a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n}=0
$$

Since β is linearly independent, $a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n} \neq 0$, so $a_{1} v_{1}+a_{2} v_{2}+$ $\cdots+a_{n} v_{n}$ is a nonzero element of $N(T)$, showing $N(T) \neq\{0\}$, and T is not one-to-one.

Conversely, suppose that T is not one-to-one. Then there is some nonzero $v \in V$ such that $T(v)=0$. Because β is a basis, we can write $v=a_{1} v_{1}+$ $a_{2} v_{2}+\cdots+a_{n} v_{n}$; clearly, not all the a_{i} are zero. Now we have

$$
0=T(v)=T\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}\right)=a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n}
$$

which shows that $T(\beta)$ is not linearly independent.

Section 2.5

(5) Let T be the linear operator on $P_{1}(\mathbb{R})$ defined by $T(p(x))=p^{\prime}(x)$, the derivative of p. Let $\beta=\{1, x\}$ and $\beta^{\prime}=\{1+x, 1-x\}$. Use Theorem 2.21 and the fact that

$$
\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

to find $[T]_{\beta^{\prime}}$.
The matrix $Q=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ changes from β^{\prime}-coordinates into β-coordinates, since its columns are the β-coordinates of the elements of β^{\prime}. The derivative operator T has matrix in the standard basis $[T]_{\beta}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$; the columns of this matrix are the β-coordinates of $T(1)$ and $T(x)$. Therefore we can write

$$
[T]_{\beta^{\prime}}=Q^{-1}[T]_{\beta} Q=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

We can check that the columns of this matrix are the β^{\prime}-coordinates of $T(1+$ $x)=1$ and $T(1-x)=-1$.
(6) For each matrix A and ordered basis β find $\left[L_{A}\right]_{\beta}$. Also, find an invertible matrix Q such that $\left[L_{A}\right]_{\beta}=Q^{-1} A Q$.

Discussion of this problem:
If A is an $n \times n$ matrix over a field F, to compute L_{A} of an element x of F^{n}, you simply write x as a column vector and multiply on the left by A. This is the definition of L_{A}. Of course, the product $A x$ also gives you $L_{A}(x)$ written as a column vector.

Now, if α is the standard basis for F^{n}, then $[x]_{\alpha}$ is just x written as a column vector Therefore, by the definition of L_{A},

$$
\left[L_{A}(x)\right]_{\alpha}=A[x]_{\alpha} .
$$

This means

$$
\left[L_{A}\right]_{\alpha}=A
$$

In each part, the matrix Q must be the matrix that changes from β coordinates into standard coordinates; its columns are the standard coordinates of the vectors in β. Then we will have

$$
\left[L_{A}\right]_{\beta}=Q^{-1}\left[L_{A}\right]_{\alpha} Q=Q^{-1} A Q
$$

We might not compute $\left[L_{A}\right]_{\beta}$ this way, since it would involve inverting Q. Instead we can use the fact that its columns are the β-coordinates of $A v$ for $v \in \beta$. (We could also find Q^{-1}, since it converts from standard to β-coordinates, so its columns are the β-coordinates of the standard basis vectors.)
(a) $A=\left(\begin{array}{ll}1 & 3 \\ 1 & 1\end{array}\right)$ and $\beta=\left\{\binom{1}{1},\binom{1}{2}\right\}$

$$
Q=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

$L_{A}(1,1)=(4,2)=6(1,1)-2(1,2)$ and $L_{A}(1,2)=(7,3)=11(1,1)-4(1,2)$. Therefore

$$
\left[L_{A}\right]_{\beta}=\left(\begin{array}{cc}
6 & 11 \\
-2 & -4
\end{array}\right)
$$

(c) $A=\left(\begin{array}{ccc}1 & 1 & -1 \\ 2 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$ and $\beta=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)\right\}$

$$
\begin{aligned}
Q & =\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 2
\end{array}\right) \\
{\left[L_{A}\right]_{\beta} } & =\left(\begin{array}{ccc}
2 & 2 & 2 \\
-2 & -3 & -4 \\
1 & 1 & 2
\end{array}\right)
\end{aligned}
$$

(7) In \mathbb{R}^{2}, let L be the line $y=m x$ where $m \neq 0$. Find an expression for $T(x, y)$.

In both parts of this problem, we can begin by choosing an ordered basis $\beta=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, where \vec{v}_{1} lies in L and \vec{v}_{2} is perpendicular to L. Then the reflection of \vec{v}_{1} about L, and the projection of \vec{v}_{1} onto L, are both \vec{v}_{1}, while the reflection of \vec{v}_{2} about L is $-\vec{v}_{2}$, and the projection of \vec{v}_{2} onto L is $\overrightarrow{0}$.

Two points on L are $(0,0)$ and $(1, m)$, so we can take $\vec{v}_{1}=(1, m)$ and $\vec{v}_{2}=(-m, 1)$.

This tells us that the matrix that changes from β-coordinates to standard coordinates is $Q=\left(\begin{array}{cc}1 & -m \\ m & 1\end{array}\right)$. Either by solving a system of linear equations or by using the formula for the inverse of a 2×2 matrix we saw in class, we see that the matrix for changing from standard coordinates to β-coordinates is $Q^{-1}=\left(\begin{array}{cc}\frac{1}{1+m^{2}} & \frac{m}{1+m^{2}} \\ -\frac{m}{1+m^{2}} & \frac{1}{1+m^{2}}\end{array}\right)$.

Therefore, if α is the standard basis for \mathbb{R}^{2}, we can write $[T]_{\alpha}=Q[T]_{\beta} Q^{-1}$, and use $[T(x, y)]_{\alpha}=[T]_{\alpha}[(x, y)]_{\alpha}=[T]_{\alpha}\binom{x}{y}$ to find $T(x, y)$.

The computations are left for you.
(a) T is the reflection of \mathbb{R}^{2} about L.

In this case $[T]_{\beta}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
(b) T is the projection on L along the line perpendicular to L.

In this case $[T]_{\beta}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.

