
Math 24
Spring 2012

Sample Homework Solutions
Week 4

Section 2.3

(3) Let g(x) = 3 + x. Let T : P2(R)→ P2(R) and U : P2(R)→ R3 be the
linear transformations respectively defined by

T (f(x)) = f ′(x)g(x) + 2f(x)

U(a+ bx+ cx2) = (a+ b, c, a− b).

Let β and γ be the standard ordered bases of P3(R) and R3 respectively.

(a) Compute [U ]γβ, [T ]β and [UT ]γβ directly. Then use Theorem 2.11 to
verify your result.

To do the direct computations, we need to see that T (1) = 2, T (x) =
3+3x, T (x2) = 6x+4x2, U(1) = (1, 0, 1), U(x) = (1, 0,−1), U(x2) = (0, 1, 0),
UT (1) = U(2) = (2, 0, 2), UT (x) = U(3 + 3x) = (6, 0, 0), UT (x2) = U(6x +
4x2) = (6, 4,−6). This tells us that

[T ]β =

2 3 0
0 3 6
0 0 4

 [U ]γβ =

1 1 0
0 0 1
1 −1 0

 [UT ]γβ =

2 6 6
0 0 4
2 0 −6


To use Theorem 2.11 to verify this, we must check that [UT ]γβ = [U ]γβ[T ]β,
which is true.

(b) Let h(x) = 3 − 2x + x2. Compute [h(x)]β and [U(h(x))]γ. Then use
[U ]γβ from (a) and Theorem 2.14 to verify your result.

[h(x)]β =

 3
−2
1

, U(h(x)) = (1, 1, 5), and so [U(h(x))]γ =

1
1
5

. To use

Theorem 2.14 to verify this, we must check that [U ]γβ[h(x)]β = [U(h(x))]γ,
which is true.
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(4) For each part, let T be as defined in the corresponding part of Section
2.2, exercise (5), and use Theorem 2.14 to compute the given vector:

(b) [T (f(x))]α, where f(x) = 4− 6x+ 3x2.

In 2.2(5), where α and β are the standard ordered bases of M2×2(R) and

P2(R) and T (f(x)) =

(
f ′(0) 2f(1)

0 f ′′(3)

)
, we showed that [T ]αβ =


1 1 0
2 2 2
0 0 0
0 0 2

.

Therefore

[T (f(x))]α = [T ]αβ [f(x)]β =


1 1 0
2 2 2
0 0 0
0 0 2


 4
−6
3

 =


−2
2
0
6

 .

(d) [T (f(x))]γ, where f(x) = 6− x+ 2x2.

In 2.2(5), where γ and β are the standard ordered bases of R1 and P2(R)
and T (f(x)) = f(2), we showed that [T ]γβ =

(
1 2 4

)
. Therefore

[T (f(x))]γ = [T ]γβ[f(x)]β =
(
1 2 4

) 6
−1
2

 = 12.

(12)(a) Let V , W , and Z be vector spaces, and let T : V → W and
U : W → Z be linear. Prove that if UT is one-to-one, then T is one-to-one.
Must U also be one-to-one?

We use the fact that a linear transformation is one-to-one if and only if
its null space is {0}, and prove the contrapositive.

Suppose that T is not one-to-one. ThenN(T ) 6= {0}; that is, there is some
nonzero vector v ∈ N(T ), so T (v) = 0. Then UT (v) = U(T (v)) = U(0) = 0,
which shows v ∈ N(UT ). Since v is nonzero, N(UT ) 6= {0}, and so UT is
not one-to-one.

It is possible for UT to be one-to-one but U not to be one-to-one. For
example, let T : R2 → R3 and U : R3 → R2 be defined by T (x, y) = (x, y, 0)
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and U(x, y, z) = (x, y). Then UT (x, y) = U(x, y, 0) = (x, y), so UT is one-
to-one. However, U is not one-to-one; the null space of U is the z-axis.

Section 2.4

(4) Let A and B be n×n invertible matrices. Prove that AB is invertible
and (AB)−1 = B−1A−1.

Using the associativity of matrix multiplication,(
AB
)(
B−1A−1

)
= A

(
BB−1

)
A−1 = AA−1 = I(

B−1A−1
)(
AB) = B−1

(
A−1A

)
B = B−1B = I.

Since B−1A−1 multiplied by AB in either order gives the identity matrix, by
the definition of the inverse of a matrix, B−1A−1 = (AB)−1. Since AB has
an inverse, AB is invertible.

(6) Prove that if A is invertible and AB = 0 then B = 0. Here 0 denotes
the zero matrix, all of whose entries are zero.

Since every entry of 0 is zero, the product of 0 with any matrix (of the
right shape to be multiplied by it) is again a zero matrix. We multiply both
sids of AB = 0 on the left by A−1 to get

A−1AB = A−10

B = 0.

(15) Let V and W be finite-dimensional vector spaces and T : V → W
be a linear transformation. Suppose that β is a basis for V . Prove that T is
an isomorphism if and only if T (β) is a basis for W

Let β = {v1, v2, . . . , vn} and T (vi) = wi.
By Theorem 2.2, page 68, T (β) = {w1, w2, . . . , wn} spans R(T ). Since T

is onto if and only if R(T ) = W , this tells us that T is onto if and only if
T (β) spans W .

Now we argue that T is one-to-one if and only if T (β) is linearly indepen-
dent. This will finish the proof, because we will have that T is an isomorphism
iff T is both one-to-one and onto, iff T (β) both is linearly independent and
spans W , iff T (β) is a basis for W .
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First, suppose that T (β) is not linearly independent. Therefore, for some
ai not all zero, we have

a1w1 + a2w2 + · · ·+ anwn = 0,

and

T (a1v1 + a2v2 + · · ·+ anvn) = a1w1 + a2w2 + · · ·+ anwn = 0.

Since β is linearly independent, a1v1 +a2v2 + · · ·+anvn 6= 0, so a1v1 +a2v2 +
· · ·+ anvn is a nonzero element of N(T ), showing N(T ) 6= {0}, and T is not
one-to-one.

Conversely, suppose that T is not one-to-one. Then there is some nonzero
v ∈ V such that T (v) = 0. Because β is a basis, we can write v = a1v1 +
a2v2 + · · ·+ anvn; clearly, not all the ai are zero. Now we have

0 = T (v) = T (a1v1 + a2v2 + · · ·+ anvn) = a1w1 + a2w2 + · · ·+ anwn,

which shows that T (β) is not linearly independent.

Section 2.5

( 5) Let T be the linear operator on P1(R) defined by T (p(x)) = p′(x),
the derivative of p. Let β = {1, x} and β′ = {1 + x, 1 − x}. Use Theorem
2.21 and the fact that (

1 1
1 −1

)−1

=

(
1
2

1
2

1
2
−1

2

)
to find [T ]β′ .

The matrixQ =

(
1 1
1 −1

)
changes from β′-coordinates into β-coordinates,

since its columns are the β-coordinates of the elements of β′. The derivative

operator T has matrix in the standard basis [T ]β =

(
0 1
0 0

)
; the columns of

this matrix are the β-coordinates of T (1) and T (x). Therefore we can write

[T ]β′ = Q−1[T ]βQ =

(
1
2

1
2

1
2
−1

2

)(
0 1
0 0

)(
1 1
1 −1

)
=

(
1
2
−1

2
1
2
−1

2

)
.
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We can check that the columns of this matrix are the β′-coordinates of T (1+
x) = 1 and T (1− x) = −1.

(6) For each matrix A and ordered basis β find [LA]β. Also, find an
invertible matrix Q such that [LA]β = Q−1AQ.

Discussion of this problem:
If A is an n × n matrix over a field F , to compute LA of an element x

of F n, you simply write x as a column vector and multiply on the left by A.
This is the definition of LA. Of course, the product Ax also gives you LA(x)
written as a column vector.

Now, if α is the standard basis for F n, then [x]α is just x written as a
column vector Therefore, by the definition of LA,

[LA(x)]α = A[x]α.

This means
[LA]α = A.

In each part, the matrix Q must be the matrix that changes from β-
coordinates into standard coordinates; its columns are the standard coordi-
nates of the vectors in β. Then we will have

[LA]β = Q−1[LA]αQ = Q−1AQ.

We might not compute [LA]β this way, since it would involve inverting
Q. Instead we can use the fact that its columns are the β-coordinates of
Av for v ∈ β. (We could also find Q−1, since it converts from standard
to β-coordinates, so its columns are the β-coordinates of the standard basis
vectors.)

(a) A =

(
1 3
1 1

)
and β =

{(
1
1

)
,

(
1
2

)}

Q =

(
1 1
1 2

)
.

LA(1, 1) = (4, 2) = 6(1, 1)− 2(1, 2) and LA(1, 2) = (7, 3) = 11(1, 1)− 4(1, 2).
Therefore

[LA]β =

(
6 11
−2 −4

)
.
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(c) A =

1 1 −1
2 0 1
1 1 0

 and β =


1

1
1

 ,

1
0
1

 ,

1
1
2


Q =

1 1 1
1 0 1
1 1 2


[LA]β =

 2 2 2
−2 −3 −4
1 1 2


( 7) In R2, let L be the line y = mx where m 6= 0. Find an expression for

T (x, y).

In both parts of this problem, we can begin by choosing an ordered basis
β = {~v1, ~v2}, where ~v1 lies in L and ~v2 is perpendicular to L. Then the
reflection of ~v1 about L, and the projection of ~v1 onto L, are both ~v1, while
the reflection of ~v2 about L is −~v2, and the projection of ~v2 onto L is ~0.

Two points on L are (0, 0) and (1,m), so we can take ~v1 = (1,m) and
~v2 = (−m, 1).

This tells us that the matrix that changes from β-coordinates to standard

coordinates is Q =

(
1 −m
m 1

)
. Either by solving a system of linear equations

or by using the formula for the inverse of a 2× 2 matrix we saw in class, we
see that the matrix for changing from standard coordinates to β-coordinates

is Q−1 =

(
1

1+m2
m

1+m2

− m
1+m2

1
1+m2

)
.

Therefore, if α is the standard basis for R2, we can write [T ]α = Q[T ]βQ
−1,

and use [T (x, y)]α = [T ]α[(x, y)]α = [T ]α

(
x
y

)
to find T (x, y).

The computations are left for you.

(a) T is the reflection of R2 about L.

In this case [T ]β =

(
1 0
0 −1

)
.

(b) T is the projection on L along the line perpendicular to L.
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In this case [T ]β =

(
1 0
0 0

)
.
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