Math 24
 Spring 2012
 Sample Homework Solutions
 Week 3

In-class problems from Monday, April 9:
(2) Give examples of pairs of subspaces W_{1} and W_{2} of \mathbb{R}^{3}, neither of which is contained in the other, such that:
(a) $W_{1}+W_{2} \neq \mathbb{R}^{3}$. In your example, what is $W_{1}+W_{2}$?
(b) $W_{1}+W_{2}=\mathbb{R}^{3}$, but \mathbb{R}^{3} is not the direct sum of W_{1} and W_{2}. In your example, what is $W_{1} \cap W_{2}$?
(c) \mathbb{R}^{3} is the direct sum of W_{1} and W_{2}.

For (a) we can take W_{1} to be the x-axis and W_{2} to be the y-axis. In this case, $W_{1}+W_{2}$ is the $x y$-plane.

For (b) we can take W_{1} to be the $x z$-plane and W_{2} to be the $y z$-plane. In this case, $W_{1} \cap W_{2}$ is the z-axis.

For (c) we can take W_{1} to be the x-axis and W_{2} to be the $y z$-plane.
(5) Express $P(\mathbb{R})$ as the direct sum of two nonzero subspaces in two ways.
(a) One of the subspaces has finite dimension.
(b) Both of the subspaces are infinite-dimensional.

For (a) we can take one subspace to be $P_{0}(\mathbb{R})$ (all constants), and the other to be all polynomials whose constant term is 0 .

For (b) we can take one subspace to be all linear combinations of even powers of x (including x^{0}, that is, 1), and the other to be all linear combinations of odd powers of x.
(6) Prove the conjecture you made in problem (3). Hint: A basis $\left\{x_{1}, \ldots, x_{k}\right\}$ for $W_{1} \cap W_{2}$ can be extended to a basis $\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right\}$ for W_{1}. It can also be extended to a basis $\left\{x_{1}, \ldots, x_{k}, z_{1}, \ldots, z_{m}\right\}$ for W_{2}. For homework, you might want to verify your conjecture by looking at problem 29(a) of section 1.6 of the textbook. Please make a conjecture yourself first, though.

We want to prove that if a finite-dimensional vector space V is the direct sum of subspaces W_{1} and W_{2}, then

$$
\operatorname{dim}(V)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)
$$

As suggested in the hint, let $\left\{x_{1}, \ldots, x_{k}\right\}$ be a basis for $W_{1} \cap W_{2}$. Since this is a linearly independent subset of W_{1}, it can be extended to a basis $\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}\right\}$ for W_{1}. Similarly, it can be extended to a basis $\left\{x_{1}, \ldots, x_{k}, z_{1}, \ldots, z_{m}\right\}$ for W_{2}.

We see from these bases that

$$
\operatorname{dim}\left(W_{1}\right)=k+n, \operatorname{dim}\left(W_{2}\right)=k+m, \operatorname{dim}\left(W_{1} \cap W_{2}\right)=k
$$

so the number of elements in $S=\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{m}\right\}$ is

$$
n+m+k=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right) .
$$

Therefore we will prove the conjecture if we show that S is a basis for V.
First we show that S spans V. Because $V=W_{1}+W_{2}$, every $v \in V$ can be written as a sum of elements of W_{1} and W_{2},

$$
v=w_{1}+w_{2}
$$

The elements $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$ can be written as linear combinations of their respective basis elements,

$$
\begin{gathered}
w_{1}=a_{1} x_{1}+\cdots+a_{k} x_{k}+b_{1} y_{1}+\cdots+b_{n} y_{n} \\
w_{2}=c_{1} x_{1}+\cdots+c_{k} x_{k}+d_{1} z_{1}+\cdots+d_{m} z_{m}
\end{gathered}
$$

Substituting the right hand sides of these two equations for w_{1} and w_{2} in $v=w_{1}+w_{2}$, we get
$v=a_{1} x_{1}+\cdots+a_{k} x_{k}+b_{1} y_{1}+\cdots+b_{n} y_{n}+c_{1} x_{1}+\cdots+c_{k} x_{k}+d_{1} z_{1}+\cdots+d_{m} z_{m}$.

This shows every $v \in V$ can be written as a linear combination of elements of S, so S spans V.

Now we show that S is linearly independent. Suppose some linear combination from S equals zero,

$$
a_{1} x_{1}+\cdots+a_{k} x_{k}+b_{1} y_{1}+\cdots+b_{n} y_{n}+c_{1} z_{1}+\cdots+c_{m} z_{m}=0 .
$$

We must show all the coefficients are zero.
We can rewrite this equation as

$$
a_{1} x_{1}+\cdots+a_{k} x_{k}+b_{1} y_{1}+\cdots+b_{n} y_{n}=-c_{1} z_{1}-\cdots-c_{m} z_{m} .
$$

On the left hand side we have a linear combination of basis elements from W_{1}, therefore, an element of W_{1}; on the right hand side we have a linear combination of basis elements from W_{2}, therefore, an element of W_{2}; hence the vector given by these linear combinations is in the intersection $W_{1} \cap W_{2}$. But V is the direct sum of $W_{1}+W_{2}$, so the only element of $W_{1} \cap W_{2}$ is zero:

$$
\begin{gathered}
a_{1} x_{1}+\cdots+a_{k} x_{k}+b_{1} y_{1}+\cdots+b_{n} y_{n}=0 . \\
-c_{1} z_{1}-\cdots-c_{m} z_{m}=0 .
\end{gathered}
$$

This first equation tells us a linear combination of the x_{i} and y_{j} equals zero. Since the x_{i} and y_{j} form a basis for W_{1}, they are linearly independent, so all the coefficients a_{i} and b_{j} must be zero. Similarly, the second equation tells us a linear combination of elements from a basis for W_{2} equals zero, so all the coefficients c_{ℓ} must be zero. This is what we needed to show.

This completes the proof.

Section 2.1
(4) Prove that T is a linear transformation; find bases for $N(T)$ and $R(T)$; verify the dimension theorem; determine whether T is one-to-one and whether T is onto.

$$
\begin{gathered}
T: M_{2 \times 3}(F) \rightarrow M_{2 \times 2}(F) \\
T\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)=\left(\begin{array}{cc}
2 a_{11}-a_{12} & a_{13}+2 a_{12} \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

The null space $N(T)$ consists of all matrices such that

$$
\begin{aligned}
& 2 a_{11}-a_{12}=0 \\
& a_{13}+2 a_{12}=0 .
\end{aligned}
$$

We can rewrite these equations as

$$
\begin{gathered}
a_{12}=2 a_{11} \\
a_{13}=-4 a_{11} .
\end{gathered}
$$

Choosing parameters a, b, c, and d for a_{11}, a_{21}, a_{22} and a_{23}, we see that $N(T)$ consists of all matrices of the form

$$
\left(\begin{array}{ccc}
a & 2 a & -4 a \\
b & c & d
\end{array}\right),
$$

which has a basis,

$$
\left\{\left(\begin{array}{ccc}
1 & 2 & -4 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),\right\} .
$$

The range $R(T)$ is spanned by the images of the basis vectors of the domain, that is, by

$$
\left\{\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
-1 & 2 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\right\} .
$$

Reducing this to a linearly independent set with the same span gives a basis for $R(T)$,

$$
\left\{\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
-1 & 2 \\
0 & 0
\end{array}\right),\right\} .
$$

From these bases we see the nullity of T is 4 and the rank of T is 2 . Since the dimension of the domain of T is 6 , and $2+4=6$, we have verified the Dimension Theorem.

Because the nullity of T is not zero, T is not one-to-one. Because the rank of T is not the dimension of the codomain, T is not onto.
(10) Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is linear, and let $T(1,0)=(1,4)$ and $T(1,1)=(2,5)$. What is $T(2,3)$? Is T one-to-one.

It is useful to note that

$$
T(0,1)=T((1,1)-(1,0))=T(1,1)-T(1,0)=(2,5)-(1,4)=(1,1) .
$$

Therefore,
$T(2,3)=T(2(1,0)+3(0,1))=2 T(1,0)+3 T(0,1)=2(1,4)+3(1,1)=(5,11)$.
Since the images of the basis vectors $(1,0)$ and $(0,1)$ are linearly independent, T must be one-to-one.
(15) $T: P(\mathbb{R}) \rightarrow P(\mathbb{R})$ is defined by

$$
T(f(x))=\int_{0}^{x} f(t) d t
$$

Prove that T is linear and one-to-one but not onto.
T is linear because we know from calculus that

$$
\int_{0}^{x}(c f+g)(t) d t=c \int_{0}^{x} f(t) d t+\int_{0}^{x} g(t) d t .
$$

T is one-to-one because if $T(f(x))=T(g(x))$ then we have

$$
\begin{gathered}
\int_{0}^{x} f(t) d t=\int_{0}^{x} g(t) d t \\
\int_{0}^{x}(f-g)(t) d t=0
\end{gathered}
$$

and the only polynomial whose integral over every interval is zero is the zero function, so $f(x)=g(x)$.
T is not onto, because if $f(x)$ is any polynomial, the constant term of

$$
T(f(x))=\int_{0}^{x} f(t) d t
$$

is zero, so 1 (for example) is not in the range of T.
(17) Let V and W be finite-dimensional vector spaces, and $T: V \rightarrow W$ be linear. Prove that if $\operatorname{dim}(V)<\operatorname{dim}(W)$ then V cannot be onto, and if $\operatorname{dim}(V)>\operatorname{dim}(W)$ then T cannot be one-to-one.

The dimension theorem tells us that

$$
n(T)+r(T)=\operatorname{dim}(V)
$$

and $n(T), r(T)$ and $\operatorname{dim}(V)$ are all non-negative.
If $\operatorname{dim}(V)<\operatorname{dim}(W)$, then

$$
r(T)=\operatorname{dim}(V)-n(T) \leq \operatorname{dim}(V)<\operatorname{dim}(W)
$$

and since $r(T) \neq \operatorname{dim}(W), T$ cannot be onto.
If $\operatorname{dim}(V)>\operatorname{dim}(W)$, then since $r(T)$ is the dimension of a subspace of W, we have $r(T) \leq \operatorname{dim}(W)<\operatorname{dim}(V)$, so

$$
n(T)=\operatorname{dim}(V)-r(T)<0
$$

and since $n(T) \neq 0, T$ cannot be one-to-one.
(18) Give an example of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $N(T)=R(T)$.

Let $T(x, y)=(y, 0)$. Then the x-axis is the null space and the range of T.

Section 2.2
(3) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by $T\left(a_{1}, a_{2}\right)=\left(a_{1}-a_{2}, a_{1}, 2 a_{1}+a_{2}\right)$. Let β be the standard basis for \mathbb{R}^{2} and $\gamma=\{(1,1,0),(0,1,1),(2,2,3)\}$. Compute $[T]_{\beta}^{\gamma}$. If $\alpha=\{(1,2),(2,3)\}$, compute $[T]_{\alpha}^{\gamma}$.

$$
\begin{gathered}
T(1,0)=(1,1,2)=\left(-\frac{1}{3}\right)(1,1,0)+(0)(0,1,1)+\left(\frac{2}{3}\right)(2,2,3) \\
T(0,1)=(-1,0,1)=(-1)(1,1,0)+(1)(0,1,1)+(0)(2,2,3) \\
{[T]_{\beta}^{\gamma}=\left(\begin{array}{cc}
-\frac{1}{3} & -1 \\
0 & 1 \\
\frac{2}{3} & 0
\end{array}\right)} \\
T(1,2)=T(1,0)+2 T(0,1)= \\
\left(\left(-\frac{1}{3}\right)(1,1,0)+(0)(0,1,1)+\left(\frac{2}{3}\right)(2,2,3)\right)+ \\
2((-1)(1,1,0)+(1)(0,1,1)+(0)(2,2,3))= \\
\left(-\frac{7}{3}\right)(1,1,0)+(2)(0,1,1)+\left(\frac{2}{3}\right)(2,2,3) .
\end{gathered}
$$

Similarlly,

$$
\begin{aligned}
& T(2,3)=\left(-\frac{11}{3}\right)(1,1,0)+(3)(0,1,1)+\left(\frac{4}{3}\right)(2,2,3) . \\
& {[T]_{\alpha}^{\gamma}=\left(\begin{array}{cc}
-\frac{7}{3} & -\frac{11}{3} \\
2 & 3 \\
\frac{2}{3} & \frac{4}{3}
\end{array}\right)} \\
& \text { (5) } \alpha=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}, \\
& \beta=\left\{1, x, x^{2}\right\} \\
& \gamma=\{1\} \\
& \text { (b) } T: P_{2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})
\end{aligned}
$$

$$
\begin{aligned}
& T(f(x))=\left(\begin{array}{cc}
f^{\prime}(0) & 2 f(1) \\
0 & f^{\prime \prime}(3)
\end{array}\right) \\
& {[T]_{\beta}^{\alpha}=\left(\begin{array}{lll}
1 & 1 & 0 \\
2 & 2 & 2 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right) .}
\end{aligned}
$$

To see where the second column comes from, the second basis element of β is $f(x)=x$, so for this polynomial $f^{\prime}(x)=1$ and $f^{\prime \prime}(x)=0$, so $T(x)=$ $\left(\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right)$.
(d) $T: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}$
$T(f(x))=f(2)$
$[T]_{\beta}^{\gamma}=\left(\begin{array}{lll}1 & 2 & 4\end{array}\right)$.
(e) $A=\left(\begin{array}{cc}1 & -2 \\ 0 & 4\end{array}\right)=(1)\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+(-2)\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)+(0)\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)+(4)\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. $[A]_{\alpha}=\left(\begin{array}{c}1 \\ -2 \\ 0 \\ 4\end{array}\right)$.
(8) Let V be an n-dimensional vector space with an ordered basis β. Define $T: V \rightarrow F^{n}$ by $T(x)=[x]_{\beta}$. Prove that T is linear.

Let $\beta=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$.
Let v and w be arbitrary elements of V. To find their coordinates, write them as linear combinations of the basis elements,

$$
v=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \quad w=b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{n} x_{n}
$$

Then their β-coordinates are the corresponding coefficients,

$$
[v]_{\beta}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right) \quad[w]_{\beta}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

Now for any scalar c we have

$$
c v+w=c\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right)+\left(b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{n} x_{n}\right)=
$$

$$
\left(c a_{1}+b_{1}\right) x_{1}+\left(c a_{2}+b_{2}\right) x_{2}+\cdots+\left(c a_{n}+b_{n}\right) x_{n}
$$

so we have

$$
[c v+w]_{\beta}=\left(\begin{array}{c}
c a_{1}+b_{1} \\
c a_{2}+b_{2} \\
\vdots \\
c a_{n}+b_{n}
\end{array}\right)
$$

Therefore,

$$
\begin{gathered}
T(c v+w)=[c v+w]_{\beta}=\left(\begin{array}{c}
c a_{1}+b_{1} \\
c a_{2}+b_{2} \\
\vdots \\
c a_{n}+b_{n}
\end{array}\right)=c\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)+\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)= \\
c[v]_{\beta}+[w]_{\beta}=c T(v)+T(w),
\end{gathered}
$$

which shows that T is linear.

