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Section 1.2

(9) Prove Corollaries 1 and 2 to Theorem 1.1, and Theorem 1.2(c).

Corollary 1: The vector 0 described in (VS 3) is unique.

Proof: Suppose 0′ is another additive identity. We must show 0 = 0′. Be-
cause 0′ is an additive identity, we have 0+0′ = 0, and by the commutativity
of addition we have 0′ + 0 = 0. Because 0 is an additive identity we have
0 + 0 = 0. By Theorem 1.1 we can “cancel out” the + 0, and so 0′ = 0.

Corollary 2: The vector y described in (VS 4) is unique.

Proof: Let y be as in (VS 4), so x + y = 0, and let z be another such
vector, so x + z = 0. We must show y = z.

By the commutativity of addition we have y + x = 0 = z + x, so by
Theorem 1.1 we can “cancel out” the + x, and so y = z.

Theorem 1.2(c): In any vector space V over a field F , for each a ∈ F , we
have a0 = 0.

Proof: Because 0 is an additive identity, 0 + 0 = 0, and so a(0 + 0) = a0.
Because multiplication by scalars distributes over addition of vectors, we
have a0 + a0 = a0.

Because 0 is an additive identity and addition is commutative, a0 =
a0 + 0 = 0 + a0, and putting this together with a0 + a0 = a0 we have
a0 + a0 = 0 + a0.

Now, by Theorem 1.1, a0 = 0.

(18) Let V = {(a1, a2) | a1, a2 ∈ R}. For (a1, a2), (b1, b2) ∈ V and c ∈ R,
define

(a1, a1) + (b1, b2) = (a1 + 2b1, a2 + 3b2) and c(a2, a2) = (ca1, ca2).

Is V a vector space over R with these operations? Justify your answer.

No. (1, 0) + (0, 0) = (1, 0) and (0, 0) + (1, 0) = (2, 0), which shows that
addition (defined in this way) is not commutative, so (VS 1) fails.
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Section 1.3

(10) Prove that W1 = {(a1, . . . , an) ∈ F n | a1 + · · ·+an = 0} is a subspace
of F n, but W2 = {(a1, . . . , an) ∈ F n | a1 + · · ·+ an = 1} is not.

Since the zero vector (0, . . . , 0) is in W1 but not in W2, we know W2

cannot be a subspace. To show W1 is, take any two vectors x and y in W1

and a scalar c in F , and show that cu and u + v are in W1.
Let u = (a1, . . . , an) and v = (b1, . . . , bn) be in W1, so a1 + · · · + an = 0

and b1 + · · · + bn = 0. Then we have cu = (ca1, . . . , can) and u + v =
(a1 + b1, . . . , an + bn).

ca1 + · · ·+ can = c(a1 + · · ·+ an) = c(0) = 0;

(a1 + b1) + · · ·+ (an + bn) = (a1 + · · ·+ an) + (b1 + · · ·+ bn) = 0 + 0 = 0;

this shows that cu and u + v are in W1.

(15) Is the set of all differentiable real-valued functions defined on R a
subspace of C(R)? Justify your answer.

Yes. We know from calculus that a differentiable function must be con-
tinuous, so this set is a subset of C(R). We also know from calculus that the
sum of differentiable functions is differentiable, and a constant multiple of a
differentiable function is differentiable. Therefore this set is closed under ad-
dition and multiplication by scalars; since it also contains the zero function,
it is a subspace.

(19) Let W1 and W2 be subspaces of a vector space V . Prove that W1∪W2

is a subspace of V if and only if W1 ⊆ W2 or W2 ⊆ W1.

If W1 ⊆ W2, then W1 ∪W2 = W2, so W1 ∪W2 is a subspace of V . In the
same way, if W2 ⊆ W1 then W1 ∪W2 is a subspace of V .

Conversely, suppose W1 ∪ W2 is a subspace of V . To show that either
W1 ⊆ W2 or W2 ⊆ W1, suppose not. Then there is w1 ∈ W1, w1 6∈ W2 and
there is w2 ∈ W2, w2 6∈ W1. As W1 ∪W2 is a subspace, w1 + w2 ∈ W1 ∪W1,
so w1 + w2 is either in W1 or in W2.

Without loss of generality, w1+w2 ∈ W1. Then, because W1 is a subspace,
w2 = (w1 +w2)−w1 ∈ W1. This is a contradiction, since w2 6∈ W1. Therefore
we must have either W1 ⊆ W2 or W2 ⊆ W1.
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