## Math 24 <br> Spring 2012 <br> Sample Homework Solutions <br> Week 1

Section 1.2
(9) Prove Corollaries 1 and 2 to Theorem 1.1, and Theorem 1.2(c).

Corollary 1: The vector 0 described in (VS 3) is unique.
Proof: Suppose $0^{\prime}$ is another additive identity. We must show $0=0^{\prime}$. Because $0^{\prime}$ is an additive identity, we have $0+0^{\prime}=0$, and by the commutativity of addition we have $0^{\prime}+0=0$. Because 0 is an additive identity we have $0+0=0$. By Theorem 1.1 we can "cancel out" the +0 , and so $0^{\prime}=0$.

Corollary 2: The vector $y$ described in (VS 4) is unique.
Proof: Let $y$ be as in (VS 4), so $x+y=0$, and let $z$ be another such vector, so $x+z=0$. We must show $y=z$.

By the commutativity of addition we have $y+x=0=z+x$, so by Theorem 1.1 we can "cancel out" the $+x$, and so $y=z$.

Theorem 1.2(c): In any vector space $V$ over a field $F$, for each $a \in F$, we have $a 0=0$.

Proof: Because 0 is an additive identity, $0+0=0$, and so $a(0+0)=a 0$. Because multiplication by scalars distributes over addition of vectors, we have $a 0+a 0=a 0$.

Because 0 is an additive identity and addition is commutative, $a 0=$ $a 0+0=0+a 0$, and putting this together with $a 0+a 0=a 0$ we have $a 0+a 0=0+a 0$.

Now, by Theorem 1.1, $a 0=0$.
(18) Let $V=\left\{\left(a_{1}, a_{2}\right) \mid a_{1}, a_{2} \in \mathbb{R}\right\}$. For $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in V$ and $c \in \mathbb{R}$, define

$$
\left(a_{1}, a_{1}\right)+\left(b_{1}, b_{2}\right)=\left(a_{1}+2 b_{1}, a_{2}+3 b_{2}\right) \text { and } c\left(a_{2}, a_{2}\right)=\left(c a_{1}, c a_{2}\right)
$$

Is $V$ a vector space over $\mathbb{R}$ with these operations? Justify your answer.
No. $(1,0)+(0,0)=(1,0)$ and $(0,0)+(1,0)=(2,0)$, which shows that addition (defined in this way) is not commutative, so (VS 1) fails.

## Section 1.3

(10) Prove that $W_{1}=\left\{\left(a_{1}, \ldots, a_{n}\right) \in F^{n} \mid a_{1}+\cdots+a_{n}=0\right\}$ is a subspace of $F^{n}$, but $W_{2}=\left\{\left(a_{1}, \ldots, a_{n}\right) \in F^{n} \mid a_{1}+\cdots+a_{n}=1\right\}$ is not.

Since the zero vector $(0, \ldots, 0)$ is in $W_{1}$ but not in $W_{2}$, we know $W_{2}$ cannot be a subspace. To show $W_{1}$ is, take any two vectors $x$ and $y$ in $W_{1}$ and a scalar $c$ in $F$, and show that $c u$ and $u+v$ are in $W_{1}$.

Let $u=\left(a_{1}, \ldots, a_{n}\right)$ and $v=\left(b_{1}, \ldots, b_{n}\right)$ be in $W_{1}$, so $a_{1}+\cdots+a_{n}=0$ and $b_{1}+\cdots+b_{n}=0$. Then we have $c u=\left(c a_{1}, \ldots, c a_{n}\right)$ and $u+v=$ $\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right)$.

$$
\begin{gathered}
c a_{1}+\cdots+c a_{n}=c\left(a_{1}+\cdots+a_{n}\right)=c(0)=0 \\
\left(a_{1}+b_{1}\right)+\cdots+\left(a_{n}+b_{n}\right)=\left(a_{1}+\cdots+a_{n}\right)+\left(b_{1}+\cdots+b_{n}\right)=0+0=0
\end{gathered}
$$

this shows that $c u$ and $u+v$ are in $W_{1}$.
(15) Is the set of all differentiable real-valued functions defined on $\mathbb{R}$ a subspace of $C(\mathbb{R})$ ? Justify your answer.

Yes. We know from calculus that a differentiable function must be continuous, so this set is a subset of $C(\mathbb{R})$. We also know from calculus that the sum of differentiable functions is differentiable, and a constant multiple of a differentiable function is differentiable. Therefore this set is closed under addition and multiplication by scalars; since it also contains the zero function, it is a subspace.
(19) Let $W_{1}$ and $W_{2}$ be subspaces of a vector space $V$. Prove that $W_{1} \cup W_{2}$ is a subspace of $V$ if and only if $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$.

If $W_{1} \subseteq W_{2}$, then $W_{1} \cup W_{2}=W_{2}$, so $W_{1} \cup W_{2}$ is a subspace of $V$. In the same way, if $W_{2} \subseteq W_{1}$ then $W_{1} \cup W_{2}$ is a subspace of $V$.

Conversely, suppose $W_{1} \cup W_{2}$ is a subspace of $V$. To show that either $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$, suppose not. Then there is $w_{1} \in W_{1}, w_{1} \notin W_{2}$ and there is $w_{2} \in W_{2}, w_{2} \notin W_{1}$. As $W_{1} \cup W_{2}$ is a subspace, $w_{1}+w_{2} \in W_{1} \cup W_{1}$, so $w_{1}+w_{2}$ is either in $W_{1}$ or in $W_{2}$.

Without loss of generality, $w_{1}+w_{2} \in W_{1}$. Then, because $W_{1}$ is a subspace, $w_{2}=\left(w_{1}+w_{2}\right)-w_{1} \in W_{1}$. This is a contradiction, since $w_{2} \notin W_{1}$. Therefore we must have either $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$.

